
Lecture 6-3

We turn now to the linear algebra portion of the course. Although in the course I covered
systems of linear equations before vector spaces, I will now review vector spaces first
(following the the LADW text). We have seen that every finite-dimensional vector space
V (one spanned by finitely many vectors) is such that any two bases of it (any two spanning
sets sets which are also linearly independent) have the same number of vectors, called the
dimension of V . If the dimension of V is n, then any m > n vectors in V are necessarily
linearly dependent, while no m < n vectors in V can span V . Any linearly independent
subset of V can be enlarged to a basis of V ; any spanning set for V (finite or infinite) can
be shrunk to a basis of V . Given an m× n matrix A, the row space of A is the subspace
of Rn spanned by its rows, while the column space (or range) of A is the subspace of Rm

spanned by its columns. Although these are subspaces of different vector spaces, they
always have the same dimension, called the rank of A. The nullity of A, defined to be
the dimension of the nullspace of A (consisting of all column vectors v with Av = 0), has
dimension equal to n minus the rank of A; the left nullspace of A, consisting of all row
vectors w with wA = 0, has dimension equal to m minus the rank of A.



These subspaces and their dimensions are most readily computed using row operations on
A; such operations, used originally in the course to decide whether a linear system Ax = b
is solvable and work out all of its solutions whenever it is solvable, preserve the row space
of A while sending its column space to another subspace of Rm with the same dimension.
The rank of A equals the number of pivots in any echelon form of A; it is because these
pivots appear symmetrically, with at most one of them in every row and column of A that
the row and columns spaces of A have the same dimension. In particular, an n×n matrix
A has linearly independent rows if and only if it is have linearly independent columns, or if
and only if its rows span Rn, or if and only if its columns span Rn. All of these conditions
are equivalent to the invertibility of A; that is, to the existence of an n×n matrix B = A−1

with AB = I; whenever such a matrix B exists we automatically have BA = I also. If A
is square and invertible then the unique solution to any linear system Ax = B that makes
sense is A−1b; in general, we determine whether Ax = b is solvable by first augmenting the
matrix A, adding the vector b as its new rightmost column, bringing A to echelon form,
applying all row operations to the column b as well as the entries in the columns of A,
and then seeing whether any zero rows in the echelon form end in a nonzero in the last
column. The system Ax = b is solvable if and only if there are no such rows in the echelon
form of the augmented matrix; if so, then columns of this echelon form without pivots
(not counting the last column) correspond to free variables in the linear system. These
variables can take any values; they completely determine the other variables.



There is a single number detA attached to any n × n matrix A called its determinant
which is nonzero if and only if A is invertible. It is most readily calculated by bringing A
(as usual) to echelon form by row operations. If a multiple of one row of A is added to
another, then detA is unchanged; if a row of A is multiplied by a scalar C, then detA is
also multiplied by c; if two rows of A are interchanged then detA changes by a sign. The
same results hold for column operations performed on A and in fact any square matrix
A has the same determinant as its transpose AT . Once A is in echelon form and in
particular is upper triangular, then its determinant is the product of its entries along the
main diagonal. We also have the twin expansions detA =

∑n
j=1 aij(−1)i+j detAij and

detA =
∑n

i=1 aij(−1)i+j detAij of detA about the ith row or jth column of A, where
Aij , the ij-minor of A, is obtained from A by deleting its ith row and jth column. If B
is the transpose of the cofactor matrix of A, so that its ijth entry is (−1)i+jAji, the jith
cofactor of A, then AB = BA = (detA)I.



Two n × n matrices A,B are called similar (or conjugate) if there is an invertible n × n
matrix P with B = P−1AP ; if so then Bk = P−1AkP and Ak are also similar for any
nonnegative integer k, or for any integer if A and B are invertible. Similar matrices have
the same rank, the same determinant, and the same trace (sum of their diagonal entries).
I will say more about similar matrices when I review the connections between matrices
and linear transformations next time.


