Lecture 6-1

Continuing from last time, let A be an m x n complex matrix and A* its conjugate trans-
pose. We saw last time that the n x nmatrix B = A* A is Hermitian and positive semidefi-
nite, whence there is an orthonormal basis uq, ... ,u, of C" consisting of eigenvectors of B,
say with respective eigenvalues A1, ... , \,, where the \; are real and nonnegative; assume
that these are arranged so that \; # 0 exactly for ¢ < r for some index r (possibly 0).
Write Au; = v; € C™; then A*v; = A\;u;. Since A and A* are adjoints of each other we
have (Au;,v;) = (vi,vi) = (u;, A*v;) = Aj and (A, v5) = (ui, A*v;) = 0 for i # j, where
(+,) is the Hermitian inner product, whence the v; are orthogonal vectors spanning the
column space (or range) C' of A. We have (v;,v;) = A\;, whence v; = 0 if and only if i > 7.
Since the nonzero v; form a basis of C' C C™ we have r < m. Now replace the v; equal to
0, namely those for which ¢ > r, by an orthonormal basis, now denoted v,y1,... , v, of
the orthogonal complement C+ of C' in C™. The upshot is that the triple matrix product
VYW equals A, where W is the unitary n x n matrix sending u; to the i-th unit coordinate
vector e;, ¥ is the “diagonal” m x n matrix sending e; to v/A\je; for i < m, and V is the
unitary m x m matrix sending v/A;e; to v; for i < r and e; to v; for j > r. Along the
way we see that the nonzero \;, which are by definition the square roots of the nonzero
eigenvalues of B = A*A, are also the square roots of the nonzero eigenvalues of AA*,
occurring with the same multiplicity for AA* as for A* A, and that the eigenvectors v; of
AA* are orthogonal. The orthonormal basis uy, ... ,u, of eigenvectors of B (and thus the
matrix W) is not unique, but once it has been chosen it determines the first » columns of
the matrix V; its remaining columns (if any) simply fill it out to a unitary m x m matrix in
an arbitrary fashion. The diagonal entries of X are uniquely determined up to reordering.
How does the polar decomposition A = UP that we saw in the last lecture fit into this
picture? The matrix P sends each eigenvector u; to v/A;u;; the matrix U sends /\ju; for
1 < rtov;. If the set uy,... ,u, is extended arbitrarily to a basis uy,... , Up, Wyry1,... , Wy,
of C" (e.g. by taking w; = u; for j > r) then U may be extended to a linear map from
C™ to C™ by defining it arbitrarily on the w;.



The remainder of the course will be entirely devoted to review. We began the course with
criteria on the second-order partials at a critical point @ of a function f : R® — R to
have a local minimum, a local maximum, or a saddle point at @. We defined the Hessian
matrix H of f at d@ by decreeing that its ij-th entry h;; is the second-order partial f;;(a)
of f at @ with respect to the i-th and j-th variables (in either order; this is a symmetric
matrix). The matrix H is positive definite if and only if v7 Hv > 0 for all nonzero vectors
v € R™ (by definition), or if and only if all eigenvalues of H are positive, or if and only if
all square submatrices of H consisting of the entries in its first ¢ rows and columns have
positive determinant. Much more recently we learned that any Hessian matrix, or more
generally any real n x n symmetric matrix A, admits an orthonormal basis of eigenvectors,
each with real eigenvalue. In general such a matrix need not be either positive or negative
definite, but it always has a well-defined signature (p,q), where p and ¢ are the largest
dimensions of subspaces P, Q of R™ such that v” Av > 0 for all nonzero v € P,w” Aw < 0
for all nonzero w € Q. The rank of A is then p 4 q. The same results hold if A is replaced
by an n x n complex Hermitian matrix (one with AT = A).



We learned the definition of differentiability for a function f :R™ — R™ at a point @ € R”
already last quarter, but it certainly bears repeating. Making full use of the language of
linear algebra, we can say that f is differentiable at a@ if and only if there is an m x n
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; if so then the matrix A is uniquely

determined and equals the Jacobian matrix J of f = (f1,-.., fn) at @, whose ij-th entry
a;; is 0f;/0x;(@). The existence of J is not enough to force differentiability of f at @ in

general. For example, the function f defined by f(z,y) = izizz for (z,y) # (0,0) and

£(0,0) = 0 fails to be differentiable at (0,0); its z- and y-partials both exist and are equal

to 1 at this point , but %\/%:;k fails to have the limit 0 (or any limit) as (h, k) — (0,0).

If the partials of the f; exist in a neighborhood of @ and are continuous at @, then f is
differentiable there. If the second-order partials 9 f; /0 ;0zy, exist at @ and are continuous
there, then the mixed partials 8% f;/0z;0zy and 02 f;/Ox0x; are equal at @.




If the differentiable function f : R™ — R is restricted to a level set of some differentiable
function g : R™ — R, then the criterion for f to have a critical point at some point @ in
this level set is that either V(@) = AVg(a@) or Vg(@) = 0. In the former case I have said
that there is no second derivative test for the local nature of a critical point. Actually this
was a white lie; see the Wikipedia article on Hessian matrices to learn about a determi-
nantal criterion for testing critical points of functions on level sets individually, involving
something called the “bordered Hessian matrix”. You won’t need to know anything about
this for the final.



