
Lecture 6-1

Continuing from last time, let A be an m× n complex matrix and A∗ its conjugate trans-
pose. We saw last time that the n×nmatrix B = A∗A is Hermitian and positive semidefi-
nite, whence there is an orthonormal basis u1, . . . , un of Cn consisting of eigenvectors of B,
say with respective eigenvalues λ1, . . . , λn, where the λi are real and nonnegative; assume
that these are arranged so that λi 6= 0 exactly for i ≤ r for some index r (possibly 0).
Write Aui = vi ∈ Cm; then A∗vi = λiui. Since A and A∗ are adjoints of each other we
have (Aui, vi) = (vi, vi) = (ui, A

∗vi) = λi and (Aui, vj) = (ui, A
∗vj) = 0 for i 6= j, where

(·, ·) is the Hermitian inner product, whence the vi are orthogonal vectors spanning the
column space (or range) C of A. We have (vi, vi) = λi, whence vi = 0 if and only if i > r.
Since the nonzero vi form a basis of C ⊂ Cm we have r ≤ m. Now replace the vi equal to
0, namely those for which i > r, by an orthonormal basis, now denoted vr+1, . . . , vm, of
the orthogonal complement C⊥ of C in Cm. The upshot is that the triple matrix product
V ΣW equals A, where W is the unitary n×n matrix sending ui to the i-th unit coordinate
vector ei,Σ is the “diagonal” m × n matrix sending ei to

√
λiei for i ≤ m, and V is the

unitary m × m matrix sending
√
λiei to vi for i ≤ r and ej to vj for j > r. Along the

way we see that the nonzero λi, which are by definition the square roots of the nonzero
eigenvalues of B = A∗A, are also the square roots of the nonzero eigenvalues of AA∗,
occurring with the same multiplicity for AA∗ as for A∗A, and that the eigenvectors vi of
AA∗ are orthogonal. The orthonormal basis u1, . . . , un of eigenvectors of B (and thus the
matrix W ) is not unique, but once it has been chosen it determines the first r columns of
the matrix V ; its remaining columns (if any) simply fill it out to a unitary m×m matrix in
an arbitrary fashion. The diagonal entries of Σ are uniquely determined up to reordering.
How does the polar decomposition A = UP that we saw in the last lecture fit into this
picture? The matrix P sends each eigenvector ui to

√
λiui; the matrix U sends

√
λiui for

i ≤ r to vi. If the set u1, . . . , ur is extended arbitrarily to a basis u1, . . . , ur, wr+1, . . . , wn

of Cn (e.g. by taking wj = uj for j > r) then U may be extended to a linear map from
Cn to Cm by defining it arbitrarily on the wj .



The remainder of the course will be entirely devoted to review. We began the course with
criteria on the second-order partials at a critical point ~a of a function f : Rn → R to
have a local minimum, a local maximum, or a saddle point at ~a. We defined the Hessian
matrix H of f at ~a by decreeing that its ij-th entry hij is the second-order partial fij(~a)
of f at ~a with respect to the i-th and j-th variables (in either order; this is a symmetric
matrix). The matrix H is positive definite if and only if vTHv > 0 for all nonzero vectors
v ∈ Rn (by definition), or if and only if all eigenvalues of H are positive, or if and only if
all square submatrices of H consisting of the entries in its first i rows and columns have
positive determinant. Much more recently we learned that any Hessian matrix, or more
generally any real n×n symmetric matrix A, admits an orthonormal basis of eigenvectors,
each with real eigenvalue. In general such a matrix need not be either positive or negative
definite, but it always has a well-defined signature (p, q), where p and q are the largest
dimensions of subspaces P,Q of Rn such that vTAv > 0 for all nonzero v ∈ P,wTAw < 0
for all nonzero w ∈ Q. The rank of A is then p+ q. The same results hold if A is replaced
by an n× n complex Hermitian matrix (one with ĀT = A).



We learned the definition of differentiability for a function ~f : Rn → Rm at a point ~a ∈ Rn

already last quarter, but it certainly bears repeating. Making full use of the language of
linear algebra, we can say that ~f is differentiable at ~a if and only if there is an m × n
matrix A such that lim~h→~0

||~f(~a+~h)−~f(~a)−A~h||
||~h||

= 0; if so then the matrix A is uniquely

determined and equals the Jacobian matrix J of ~f = (f1, . . . , fn) at ~a, whose ij-th entry

aij is ∂fi/∂xj(~a). The existence of J is not enough to force differentiability of ~f at ~a in

general. For example, the function f defined by f(x, y) = x3+y3

x2+y2 for (x, y) 6= (0, 0) and

f(0, 0) = 0 fails to be differentiable at (0, 0); its x- and y-partials both exist and are equal

to 1 at this point , but f(h,k)−h−k√
h2+k2

fails to have the limit 0 (or any limit) as (h, k)→ (0, 0).

If the partials of the fi exist in a neighborhood of ~a and are continuous at ~a, then ~f is
differentiable there. If the second-order partials ∂2fi/∂xj∂xk exist at ~a and are continuous
there, then the mixed partials ∂2fi/∂xj∂xk and ∂2fi/∂xk∂xj are equal at ~a.



If the differentiable function f : Rn → R is restricted to a level set of some differentiable
function g : Rn → R, then the criterion for f to have a critical point at some point ~a in
this level set is that either ∇f(~a) = λ∇g(~a) or ∇g(~a) = ~0. In the former case I have said
that there is no second derivative test for the local nature of a critical point. Actually this
was a white lie; see the Wikipedia article on Hessian matrices to learn about a determi-
nantal criterion for testing critical points of functions on level sets individually, involving
something called the “bordered Hessian matrix”. You won’t need to know anything about
this for the final.


