
Lecture 5-8

Continuing from last time, we evaluate a number of integrals by changing to polar co-
ordinates. First, the sphere of radius R centered at the origin may be viewed as the
region between the graphs of z = −

√
R2 − x2 − y2 and z =

√
R2 − x2 − y2 over the

disk D of radius R centered at the origin in the xy-plane. Hence the volume of the
sphere is given by

∫
D

2
√
R2 − x2 − y2, dx dy, which we rewrite first as an iterated integral

and then switch to polar coordinates, obtaining
∫ 2π

0

∫ R
0

2r
√
R2 − r2) dr dθ; note that here,

as in many examples to come, the appearance of the extra factor of r in the integrand

makes the integral much easier to evaluate. Then we get
∫ 2π

0
−(2/3)(R2 − r2)3/2|R0 dθ =∫ 2π

0
(2/3)R3 dθ = (4/3)πR3, in accordance with the formula we all know and love. A some-

what more involved but not really more difficult calculation leads to the volume of the
spherical cap obtained if the sphere of radius R is cut by the plane z =

√
R2 −R2

0 < R
and only the portion above this plane retained. This portion is the region between the
graphs of z = R0 and z =

√
R2 − x2 − y2 lying over the disk D′ of radius R0 in the

xy-plane; its volume is given by the integral
∫ 2π

0

∫ R0

0
r((
√
R2 − r2 −

√
R2 −R2

0 dr dθ =

(2π/3)(R3 − (R2 −R2
0)3/2)− πR2

0

√
R2 −R2

0.



Next we do a very classical computation which leads unexpectedly to another improper
integral in one variable. Integrating the function f(x, y) = e−x

2−y2 over the disk DR of

radius R, using polar coordinates, we get
∫ 2π

0

∫ R
0
re−r

2

dr dθ =
∫ 2π

0
−(1/2)e−r

2 |r=Rr=0 dθ =

π(1 − e−R2

); taking the limit as R → ∞ we get π. Now limR→∞
∫ R
−R

∫ R
−R f(x, y) dx dy

turns out to have the same value π; to see this, note that if we integrate f over the
region CR bounded between DR and the rectangle SR = [−R,R] × [−R,R], the inte-

grand is positive and bounded above by e−R
2

, while the area of the region of integra-
tion is (4 − π)R2, so that the difference between the integrals of f over SR and DR is

bounded by (4 − π)R2e−R
2

, which goes to 0 as R → ∞. But now
∫
SR
f(x, y) dx dy =∫ R

−R
∫ R
−R e

−x2−y2 dx dy =
∫ R
−R e

−y2(
∫ R
−R e

−x2

dx) dy = (
∫ R
R
e−x

2

dx)2. We conclude that∫∞
−∞ e−x

2

dx =
√
π (as we stated earlier but did not prove then). The function g(x) = e−x

2

,
after a suitable change of the independent variable x, represents the classical normal or
Gaussian distribution, important in both probability and statistics; a large number of at-
tributes such as human height, depending on a large number of more or less independent
factors, are distributed in this way.



Of course our earlier formula
∫ b
a

(1/2)f(θ)2 dθ for the area of the region between the polar
graph r = f(θ) and the rays θ = a, θ = b. also follows at once from double integration in
polar coordinates (of the function 1 over the region in question); we used a special case of
this formula to derive the change of variable factor r for integration in polar coordinates in
the first place. We conclude our treatment of polar coordinates with yet another classical
computation, this time of the volume of a right circular cone with base radius R and height
h. The height of this cone varies linearly from h at (0, 0) to 0 on the circle of radius R in
the xy-plane, so is given in polar coordinates by (h/R)(R − r). Accordingly, the volume

of the cone is
∫ 2π

0

∫ R
0

(rh/R)(R − r) dr dθ =
∫ 2π

0
h(R

2

2 −
R2

3 ) dθ = (1/3)πR2h, again as we
all know and love.



As useful as the polar coordinate system is, it is but one of infinitely many coordinate
systems, each well adapted to its own kind of double integrals over planar regions. A
simple but very useful change of coordinates (in effect) takes place when we have a region
R in the plane and we stretch it by constant factors of a, b > 0 in the x and y directions,
respectively, replacing all points (x, y) in R by new points (ax, by) to obtain a new region
R′. Given an integrand f(x, y) defined on R, we get a new integrand g on R′, declaring
that its value g(ax, by) at t(ax, by) equals f(x, y) at the old point (x, y). What is the
relationship between

∫
R
f(x, y) dx dy and

∫
R′ g(x, y) dx dy? This is easy to analyze directly,

since a typical subrectangle S appearing in an upper or lower sum for the integral of f
over R on which f has the greatest lower and least upper bounds m and M , respectively,
corresponds to a subrectangle S′ on which g has the same greatest lower and least upper
bounds m and M , such that the area of S′ is ab times that of S. The same result holds
if a or b is allowed to be negative, provided that we replace ab by its absolute value |ab|.
Accordingly,

∫
R′ g(x, y) dx dy = |ab|

∫
R
f(x, y) dx dy. For example, the area of the elliptical

disk defined by (x2/a2) + (y2/b2) ≤ 1 (with a, b > 0) is just ab times the area of the unit
disk, defined by x2 + y2 ≤ 1, or πab, because the first region is obtained from the second
by multiplying all x-coordinates by a and all y-coordinates by b. In general, we express
the relationship between the integrals of f and g above formally as follows: we change the
names of the variables in the integral of g to u and v and write x = u/a, y = v/b, whence
formally dx dy = 1

|ab|du dv (since dx = 1
|a|du, dy = 1

|b|dv; we use absolute value signs here

because we are fixing the order of the limits of integration, always going from the smaller
limit to the larger one). Hence

∫
R
f(x, y) dx dy = 1

|ab|
∫
R′ g(u, v) du dv, with a typical point

(u, v) ∈ R′ corresponding to (x, y) ∈ R. We will further develop and massively generalize
this formalism later.


