
Lecture 5-7

We have seen improper integrals of functions of one variable; thus
∫∞
a
f(x) dx is defined to

be limb→∞
∫ b
a
f(x) dx, provided the limit exists. Similarly an improper double integral like∫∞

a

∫∞
b
f(x, y) dx dy is defined to be limc,d→∞

∫ c
a

∫
bdf(x, y) dx dy if the limit exists; in this

last limit the parameters c, d approach ∞ independently, so that if
∫∞
a

∫∞
b
f(x, y) dx dy =

L, then given ε > 0 there is M such that whenever c, d > M we have |
∫ c
a

∫ d
b
f(x, y) dx dy−

L| < ε.



One can change the order of integration in both proper and improper double integrals.
Remarkably enough, a number of improper integrals of functions of one variable are eas-
ier to compute if they are rewritten as double integrals. For example, recall the integral∫∞
0

sinx/x dx from the fall. We saw then that this integral converges conditionally that
is, it converges only because of cancellation between the positive and negative values
of the integrand), but we had no means of actually computing it (though we stated at
the time that its value is π/2). We now show how to do this using double integrals.
We begin with the simple calculation that an antiderivative of e−ax sinx is given by
e−ax( −1a2+1 sinx − 1

a2+1 cosx), where a is a constant. Evaluating
∫∞
0

∫∞
0
e−xy sinx dy dx

we get
∫∞
0

(sinx/x) dx. Changing the order we get
∫∞
0

∫∞
0
e−xy sinx dx dy, which equals∫∞

0
e−xy −yy2+1 sinx− 1

y2+1 ) cosx)|∞0 =
∫∞
0

1
y2+1 dy = π/2, as claimed. Remarkably enough

(and again as claimed previously) the integral I ′ =
∫∞
0

(sinx/x)2 dx also has the value π/2.

To prove this we look at the integral I =
∫∞
0

1−cos x
x2 dx. Using integration by parts (with

f(x) = 1− cosx, g′(x) = 1/x2 we find that I ′ = −(1− cosx) 1
x |
∞
0 +

∫∞
0

(sinx)/x dx = π/2

(since (1 − cosx)/x → 0 as x → 0, by L’Hopital’s Rule). Now 1 − cosx = 2 sin2(x/2);
making the substitution u = x/2, du = (1/2)dx, we get I ′ = I, as claimed.



It should come as no surprise to learn that the integral
∫
R
f(x, y) dx dy can be interpreted

as the volume of the solid bounded by the region R in the xy-plane and the graph of f(x, y),
counting that portion of the solid above the xy-plane positively and the portion below this
plane negatively, as the definition of the integral was chosen with exactly this application
in mind. As a consequence we can often exploit symmetry to show that certain double
integrals must be 0, since the positive part of the integrand cancels out the negative part.
Thus we have

∫
D

sin xy
x2+y2 , dx dy = 0 if D is the disk defined by the inequality x2 + y2 ≤ 1.

Double integrals have physical interpretations as well; for example, if an object with density
ρ(x, y) at the point (x, y) occupies the region R in the plane, then the mass M of the object
is given by

∫
R
ρ(x, y) dx dy. The center of mass (or centroid) of the object has coordinates

(x̄, ȳ), where x̄ = Mx/M and Mx is the x-moment
∫
R
xρ(x, y) dx dy; similarly ȳ = My/M ,

where My is the y-moment
∫
R
yρ(x, y) dx dy. Thus the portion D′ of the disk Da of radius a

defined by x2+y2 ≤ a2 lying in the first quadrant and having unit density has mass (π/4)a2,

this being the area of the disk. The x-moment Mx =
∫
D′ x dx dy =

∫ a
0

∫√a2−x2

0
x dy dx =∫ a

0
x
√
a2 − x2 dx = −(1/3)(a2 − x2)3/2|a0 = a3/3 and the x-coordinate x̄ of the centroid is

(1/3)a3

(π/4)a2 = 4a/3π. By symmetry ȳ = x̄, so the centroid is located at (4a/3π, 4a/3π).



Since we often have occasion in practice to integrate functions over disks or other re-
gions readily describable in polar coordinates rather than rectangles it makes sense to ask
whether there is a better way to divide such regions into smaller ones other than sub-
rectangles in order to define the upper and lower sums whose limit is a given integral
over the region. More precisely, suppose that our region R of integration is defined by
the inequalities a ≤ θ ≤ b, g(θ) ≤ r ≤ h(θ) in polar coordinates, where [a, b] ⊂ [0, 2π]
and 0 ≤ g(θ ≤ h(θ) for θ ∈ [a, b]. Dividing R into “polar rectangles” Rij specified by
inequalities ri−1 ≤ r ≤ ri, θj−1 ≤ θ ≤ θj , we know that the area Aij of Rij is given by
(1/2)(r2i − r2i−1)(θ)j−θj−1), from our earlier formula for the area of a region enclosed by a
polar graph. Letting m,M be the respective greatest lower and least upper bounds of the
integrand f , now regarded as a function of the polar coordinates r and θ rather than x and
y thanks to the change of coordinate formulas x = r cos θ, y = r sin θ, we see that upper
and lower bounds for the integral of f over R are given by sums to which the contribution
of Rij is MAij and mAij , respectively. As these last quantities may be regarded as the
integrals of Mr and mr over the intervals r ∈ [ri−1, ri], θ ∈ [θj−1, θj ], treating r, θ for this
purpose as though they were Cartesian coordinates in their own right. Taking the limits
of these upper and lower bounds as the polar rectangles Rij get smaller and smaller, we

see that the integral
∫
R
f(x, y) dx dy =

∫ b
a

∫ h(θ)
g(θ)

rf(r cos θ, r sin θ) dr dθ. This is the change

of variable formula for polar coordinates, which we will explore more fully next time.


