
Lecture 5-4

We wrap up our treatment of linear algebra by solving the polynomial problem posed last
time and proving one more general result about n× n matrices. We stated last time that
given any n+1 distinct numbers x1, . . . , xn+1 and arbitrary numbers y1, . . . , yn+1, there is
a unique polynomial p of degree at most n such that p(xi) = yi for all i. To prove this, write
the polynomial p as

∑n
j=0 ajx

j . Then the requirement that p(xi) = yi reduces to the linear

system MX = B, where M is the Vandermonde matrix


1 x1 · · · xn1
· · ·
· · ·
· · ·
1 xn+1 · · · xnn+1

 , X =


a0
·
·
·
an

 , B =


y1
·
·
·

yn+1

; note that the xi and yi are known constants here while the ai are

the unknown coefficients in p that we are trying to determine. In HW last week you showed
that the determinant of this matrix is

∏
(xj − xi) 6= 0, where the product takes place over

all indices i, j with 1 ≤ i < j ≤ n+ 1, since the xi are distinct. Hence this system indeed
has a unique solution, as desired. Now, as we mentioned last time, if n is large, it is much
more common in practice to look for a low-degree polynomial q, say of degree at most
2, that comes as close as possible to satisfying q(xi) = yi for all i. The same argument
that showed that our matrix M is nonsingular also shows that if M is replaced by the
analogous matrix with m > n+ 1 numbers xi (each paired with a yi) but still only n+ 1
columns, with the xi raised to the n-th power in the last column, then M has full rank.
Hence the (typically) inconsistent system MX = B is such that if it is replaced by the
normal equations MTMX = MTB then these normal equations have a unique solution X.
Hence there is a unique least-squares best fit q to the data points (xi, yi) for 1 ≤ i ≤ m,
usually not passing through any of these points, but coming fairly close to all of them.
The uniqueness of q in this situation is very convenient in applications. (Other measures
of goodness of fit, different from the least-squares one, are also sometimes used in practice,
but much less often.)



Returning to the theory one last time we now let A be an n×n matrix with characteristic
polynomial p(λ) = det(A − λI); as previously observed, p is a polynomial of degree n.
Since all powers A0 = I, A,A2, . . . make sense and are again n × n matrices, it makes
sense to evaluate the polynomial p at the matrix A rather than a number. The famous
Cayley-Hamilton Theorem asserts that p(A) = 0 (the 0 matrix). To prove this we let
Bλ be the transpose of the cofactor matrix of A − λI. Regard both A − λI and Bλ as
matrices with entries in R[λ], the ring of polynomials in one variable λ. We then have
Bλ(A− λI) = (A− λI)Bλ = p(λ)I, by the same formal argument that showed that if any
n×n matrix M is multiplied on the left by the transpose N of its cofactor matrix than the
product NM = (detM)I. Writing Bλ as a polynomial

∑
iMiλ

i with matrix coefficients
(where the Mi have constant entries, independent of λ), we see by induction on i from
this calculation that the matrices Mi all commute with A. Now given any polynomial
q(λ) =

∑
Niλ

i with constant matrix coefficients Ni commuting with A, we can substitute
A for λ. In particular, doing this with A−λI gives the zero matrix, while doing with with
p(λ)I gives p(A). Hence p(A) = 0, as claimed.



In particular, any n × n matrix satisfies a polynomial of degree n and leading coefficient
(−1)n. The same argument works for matrices over any field K in place of R, and in
fact for matrices over any commutative ring; we never needed to divide by any entry
of a matrix. Thus for example an n × n matrix over the ring Z of integers satisfies a
polynomial of degree n and leading coefficient (−1)n with integer coefficients. Multiplying
this polynomial by −1 if necessary, we may assume that its leading coefficient is 1. Almost
all of the results about matrices that we have proved this term, though stated only for
matrices with real entries, in fact apply to matrices with entries in any field. In abstract
algebra, one generalizes many of these results to matrices with entries in a commutative
ring; the Cayley-Hamilton Theorem is a prime example.



We also mention that Cramer’s Rule (giving the unique solution to a linear system AX =
B with A square and invertible, such that the ith coordinate xi of the unique solution
X is a ratio of determinants), although quite cumbersome to apply in practice to solve
linear systems, is extremely important theoretically; it is used to state and prove the
general Implicit Function Theorem for m functional equations f1(x1, . . . , xn+m) = . . . =
fm(x1, . . . , xn+m) = 0 in m+n variables xi, using these equations to solve for m of the xi
differentiably in terms of the others (if the fi have continuous partials). It is very handy
to have explicit uniform formulas for the partial derivatives of the resulting m of the xi
with respect to the others and that is just what Cramer’s Rule provides, expressing these
partial derivatives as ratios of determinants.
We wrap up the course with multivariable integral calculus, following Chapter 17 of Salas-
Hille. Linear algebra will make a final grand appearance later, in the context of the change
of variable formula for multiple integrals.


