
Lecture 5-29

Real symmetric (and more generally complex Hermitian) matrices have so many nice prop-
erties that one would like to extend some of them to arbitrary matrices, even rectangular
ones. To this end, let A be a complex m×n matrix and A∗ its conjugate transpose. Since
the conjugate transpose of a product of matrices is the reverse product of their conjugate
transposes, we see that the n× n matrix B = A∗A is Hermitian; in fact it is also positive
semidefinite, since if v ∈ Cn then v̄TBv = v̄TA∗Av = (Av,Av) ∈ R, (Av,Av) ≥ 0, where
the parentheses denote the Hermitian inner product. If the kernel of A is 0, then B is
positive definite. In general, we have seen that B admits a unique positive semidefinite
Hermitian square root P . If P is positive definite and thus invertible, set U = AP−1, so
that A = UP ; then U∗U = P−1A∗AP−1 = I, the identity matrix of the appropriate size,
since B = A∗A commutes with both its square root and the inverse of this square root.
We cannot call the matrix U unitary in general, since it need not even be square, but we
can call it the matrix of an isometry, in the sense that (Uv,Uv) = (v, v) whenever Uv is
defined. If P is not invertible, then it still defines an invertible linear transformation from
its column space to itself; this holds since the column space C of P is the conjugate of
its row space R (being obtained from its row space by replacing every coordinate of every
vector by its conjugate as a complex number), and the Hermitian product (v, v) of any
vector v in R with itself is the dot product of v and its conjugate v̄which is 0 if and only
if v = 0. Thus no nonzero vector in C has dot product 0 with all of R , and multiplication
by P sends to C to itself in a one-to-one and thus onto fashion. There is then a unique
isometry mapping any vector w = Pv ∈ C to Av, where v ∈ R, which we can extend to
all of Cn by decreeing that it send C⊥, the orthogonal complement of C relative to the
Hermitian form (·, ·), to 0.



Hence in any event we can always write A = UP , where P is positive semidefinite and
n×n, while we could call U quasi-unitary; it defines an isometry from the column space of
P to that of A. This is called the polar decomposition of A; in it the matrix P is uniquely
determined (as the unique positive semidefinite square root of A∗A, sometimes called the
modulus of A and denoted |A|) but the matrix U is unique if and only if P is positive
definite. If m = n, so that A is square, then we can take U to be n × n and unitary in
the ordinary sense that U∗ = U−1. We call A = UP the polar decomposition since it
is analogous to writing a complex number z = a + bi as the product u||z|| of the norm
||z|| =

√
a2 + b2 of z and a complex number u of norm 1.



We look at a couple of examples. In all of them we have for simplicity stuck to real
matrices and the ordinary dot product, so that our matrices U are orthogonal rather than

unitary. If A =

 1
1
1

, then B = A∗A is the 1 × 1 matrix 3 and P =
√

3. In this case

U =


1√
3
1√
3
1√
3

 and we have A = UP,U∗U = 1. On, the other hand, if A = (1, 1, 1),

then B =

 1 1 1
1 1 1
1 1 1

 , P = 1√
3
B. Here we may take U to be any matrix (a, b, c) with

a + b + c =
√

3 and then indeed A = UP . The matrix U∗U looks nothing like the
3 × 3 identity matrix for any choice of a, b, or c, but we observe that any choice of U as

above will send v =

 1
1
1

, the unique vector up to scalar multiple in the column space

of P to the vector
√

3 ∈ C1, whose square length 3 is indeed the same as that of v.

Finally, if we let A be our old non-diagonalizable friend

(
1 1
0 1

)
, then it turns out that

U = 1√
5

(
2 1
−1 2

)
, P = 1√

5

(
2 1
1 3

)
.



In general the eigenvalues of P , which are the square roots of the eigenvalues of B = A∗A,
are called the singular values of A. If A is real, square, and symmetric, or more generally
Hermitian, the its singular values are the same as its eigenvalues, but in general the singular
values of A are quite distinct from its eigenvalues; for example, singular values are defined
even for nonsquare rectangular matrices A, while eigenvalues are not. Even for square
matrices with say rational entries and eigenvalues, their singular values can be irrational.

In the example A =

(
1 1
0 1

)
above, A has 1 as its only eigenvalue, but its singular values

are
√
5+1
2 and

√
5−1
2 , the unique pair of real numbers with sum equal to the trace

√
5 of P

and product equal to its determinant 1.



Combining the polar decomposition with the diagonalization P = V −1DV of any positive
semidefinite matrix P by a unitary matrix V , we arrive at the singular value decomposition
UΣV of any m×n complex matrix A, usually formulated so that U, V are unitary matrices
in the ordinary sense, of sizes m×m and n×n, respectively, while Σ is an m×n “diagonal”
matrix (all of its entries σij with i 6= j are 0; the nonzero entries σii are the nonzero singular
values of A). In this setup the matrices U and V are not unique, even if A has full rank.
Going back to the earlier examples A = (1, 1, 1) and (1, 1, 1)T , we find that we may take
the 1× 1 unitary matrix to be 1 in both cases. The matrix Σ is (

√
3, 0, 0) for A = (1, 1, 1)

and (
√

3, 0, 0)T for A = (1, 1, 1)T . For A = (1, 1, 1) we may take the 3×3 unitary matrix to
be any orthogonal matrix with first row ( 1√

3
, 1√

3
. 1√

3
) for A = (1, 1, 1) and the transpose of

such a matrix in the transposed case. We will give a more careful account of the singular
value decomposition next time.


