
Lecture 5-27

We continue our discussion of orthogonality and dot products, this time in a more abstract
context. When we were discussing Fourier series, we made the crucial observation that
the functions fn(x) = sinnx for n > 0 and gn(x) = cosnx for n ≥ 0 are such that the
integral of the product of any two distinct functions in this list from −π to π is 0, while
the integral of the square of any function in this list from −π to π is π, except for g0;
the integral

∫ π
−π g

2
0 dx = 2π. On a purely formal level, this last statement seems to say

that the fn and gn form a set of pairwise orthogonal vectors. This is indeed the case! We
already know that in fact any continuous function on [−π, π] can indeed be regarded as a
vector, simply because the set C of such functions is a vector space and any element of a
vector space can be called a vector. We need to introduce an analogue of the dot product
on this vector space to justify regarding these vectors as orthogonal. This analogue should
come as no surprise by now, given the integral formulas just mentioned; we decree that
if f, g ∈ C, then f · g =

∫ π
−π f(x)g(x) dx. (In effect we replace the most naive analogue,

namely
∑
x∈[−π,π] f(x)g(x), which does not make sense, by the integral

∫ π
−π f(x)g(x) dx,

which does). Clearly with this definition f · g is linear in both f and g; furthermore, the

crucial property f · f = 0 if and only if f = 0 also holds, since the integral
∫ b
a
g(x) dx of

any nonnegative continuous function g(x) over an interval [a, b] with a < b is 0 if and only
if g = 0. We express this property by saying the dot product is positive definite, using a
phrase we have used before in another context.



With the dot product in hand, we can now define the length (or norm) of a function f ∈ C
in the same way as for Rn; we set ||f || =

√
f · f . Then the Cauchy-Schwarz inequality

|f · g| ≤ ||f ||||g|| carries over immediately to C, with the same proof as for Rn; we also
have the triangle inequality ||f + g|| ≤ ||f ||+ ||g||, which we can again prove in the same
way as for Rn. In fact, even though the vector space C does not seem at first to have
any geometric interpretation, we can in fact do geometry on it, as we can on any vector
space equipped with a dot product. In particular, we can speak of the angle between two
functions in C, defined in the same way as for Rn. Thus we now can indeed regard the
functions fn, gn above as pairwise orthogonal vectors in C. Dividing all the fn, gn with
n 6= 0 by

√
π and g0 by

√
2π, we get a family F of orthonormal vectors in C.



Now this family F is not an orthonormal basis of C, as there are clearly functions in C
that are not finite linear combinations of the functions in F . What is true however is
that functions in the span of F are dense in C; that is, given g ∈ C and ε > 0 there is a
finite linear combination f a functions in F (sometimes called a trigonometric polynomial)
such that ||f − g|| < ε. Thus in some sense the vector space C is not as large as it first
appears; even though it has uncountable dimension, it admits a countable-dimensional
dense subspace. Vector spaces with this last property are called separable; unfortunately
this meaning has nothing to do with separable differential equations. Thus just as the
uncountable set R admits the countable dense subset Q, so the uncountable-dimensional
space C admits a countable dense subset, consisting of all finite linear combinations with
rational coefficients of functions in F .



The above family F is by no means the only countable orthonormal set of vectors whose
span is dense in C. Another one that looks quite different is the family of Legendre poly-
nomials. These are usually regarded as vectors in the space C ′ of continuous functions on
[−1, 1] rather than as vectors in C (though of course any polynomial is continuous on all of

R). The dot product is naturally enough defined on C ′ by f ·g =
∫ 1

−1 f(x)g(x) dx. Legendre

polynomials are constructed by starting with the obvious basis 1, x, x2, . . . of the subspace
of polynomials on [−1, 1] and then replacing it by an orthogonal (not orthonormal) basis of
the same space via the Gram-Schmidt process. The first two polynomials are P0 = 1 and
P + 1 = x; thereafter one has the recurrence relation (n+ 1)Pn+1 = (2n+ 1)xPn−nPn−1,
so that Pn has degree n. Instead of Pn ·Pn = 1 we have Pn ·Pn = 2

2n+1 ; we can also say that
the Pn are normalized by the condition that Pn(1) = 1 for all n. There are many beautiful
facts about the Pn (which you can look up on Wikipedia and other places); I will content
myself with mentioning Rodrigues’s formula, which asserts that Pn = 1

2nn!
dn

dxn (x2 − 1)n.
What makes the span of the Pn dense in C ′ (or the span of F dense in C) is that there is
no nonzero f ∈ C ′ with f ·Pn = 0 for all n (and similarly no nonzero f ∈ C with f · g = 0
for all g ∈ F ).


