
Lecture 5-26

We begin by going over last Friday’s midterm. The first problem was unquestionably
the toughest. Following the hint, start with a basis v1, . . . , vm of the kernel of f and
expand it to a basis B = v1, . . . , vn of V . The added basis vectors vm+1, . . . , vn are
then such that wm+1 = f(vm+1), . . . wn = f(vn) are linearly independent, for otherwise f
would send some linear combination of vm+1, . . . , vn to 0, whence that combination would
have to equal a combination of v1, . . . , vm, contradicting linear independence of v1, . . . , vn.
Consequently wm+1, . . . , wn can be extended to a basis B′ = wm+1, . . . , wn, w

′
1, . . . , w

′
r of

W . Now the matrix of f relative to the bases B,B′ has all zeroes in its first m columns
consist of one 1 and all other entries 0, where the 1s start at the first coordinate and and
move one coordinate down in every successive column. In particular there is at most one
1 in every row and column and all other entries are 0, as claimed. In the second problem,
computing the determinants of the upper left square submatrices of A, we get 2, 1, and
a+ 1− 2 = a− 1 (expanding detA along its last row). Hence A is positive definite if and
only if a > 1.



In the third problem, we see at once by symmetry that the coordinates x̄, ȳ, z̄ of the
centroid are all equal. Computing x̄ by integrating in spherical coordinates, we obtain∫ π/2
0

∫ π/2
0

∫ 1

0
ρ3 sin2 φ cos θ dρ dφ dθ =

1
4 ·
π
4 ·1
π
6

= 3
8 , whence the centroid is ( 3

8 ,
3
8 ,

3
8 ), since

the volume of the portion of the ball in the first octant is one-eighth of the total volume
of 4π/3 of the ball. In the fourth problem we set x = ar cos θ, y = br sin θ, so that the
inequalities 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π describe the region of integration in r, θ coordinates;

then the desired mass is
∫ 2π

0

∫ 1

0
abkr(a2r2 cos2 θ + b2r2 sin2 θ) dr dθ = (k/4)(πa2 + πb2)ab,

since the change of variable factor for this coordinate change is rab. In the last problem,
let y = mx+b be the linear polynomial. To solve for m and b we start with the inconsistent

system

 1 0
1 1
1 2

( b
m

)
=

 1
2
4

. The normal equations form the system

(
3 3
3 5

)(
b
m

)
=(

7
10

)
, whose solution is m = 3/2, b = 5/6. The best least-squares linear fit has equation

y = (3/2)x+ (5/6).



We now wrap up Chapter 5 in LADW with a further account of orthogonality of vec-
tors in Rn; the discussion extends to Cn if the dot product is replaced by the Hermi-
tian inner product, but for simplicity we will stick to the real case and the dot product.
Given a collection of pairwise orthogonal nonzero vectors v1, . . . , vm ∈ Rn, the coeffi-
cients ai in any linear combination v =

∑m
i=1 aivi are uniquely recovered from v alone,

since ai = v·vi
vi·vi . In particular the vi are necessarily linearly independent in this situ-

ation, so that they form a basis for the subspace S of Rn that they span. If the vi
happen in addition to be unit vectors, so that they form what is called an orthonor-
mal basis of S, then the formula for ai simplifies even further, to ai = v · vi. Thus not
only is every orthonormal set of vectors automatically a basis for the subspace that it
spans, but it is especially easy to write any vector in this space as an explicit combi-
nation of vectors in this basis. We actually saw an infinite-dimensional version of this
same phenomenon when we were discussing Fourier series. We observed that the integral∫ π
−π cosnx sinmxdx = 0 for all nonnegative integers n,m, while

∫ π
−π sinnx sinmxdx =∫ π

−π cosnx cosmxdx = 0 whenever n 6= m; moreover,
∫ π
−π sin2 nx dx =

∫ π
−π cos2 nx = π if

n 6= 0 but
∫ π
−π cos2 0x dx = 2π. As a formal consequence, if an integrable function f(x)

on [−π, π] is written as the sum
∑∞
n=1 an sinnx+

∑∞
m=0 cosmx, then we can recover the

coefficients an, bn in the sums via an = 1
π

∫ π
−π f(x) sinnx dx, bn = 1

π

∫ π
−π f(x) cosnx dx for

n 6= 0 and b0 = 1
2π

∫ π
−π f(x) cos 0x dx = 1

2π

∫ π
−π f(x) dx. We can then use the Fourier series

for f(x) = |x|, for example, which converges to f(x) for x ∈ [−π, π], to give another proof

that the sum
∑∞
k=1

1
k2 = π2

6 .



Since orthonormal bases are so much easier to compute with than arbitrary ones, it is of
interest to know that there is a systematic procedure, called the Gram-Schmidt process, for
replacing any basis v1, . . . , vm of any subspace S of Rn by an orthonormal one u1, . . . , um
for the same space. We do this one step at a time. Start by replacing the first vector
v1 by the unit vector u1 = v1/||v1|| in its direction. Then replace v2 by the difference
v′2 = v2 − (v2 · u1)u1 of v2 and its orthogonal projection onto u1, so that v′2 · u1 = 0;
note that v2 cannot be 0, since v1, v2 are independent. Then replace v′2 by the unit vector
u2 in its direction; clearly the span of u1, u2 is the same as that of v1, v2. Continue by
replacing v3 by the difference v′3 = v3 − (v3 · u1)u1 − (v3 · u2)u2 of itself and the sum
of its projections onto u1u2; then replace v′3 by the unit vector u3 in its direction, and
so on. Then u1, . . . , um is an orthonormal basis of S, as claimed. For example (see p.
132 of LADW), if v1 = (1, 1, 1), v2 = (0, 1, 2), v3 = (1, 0, 2), then u1 = 1√

3
(1, 1, 1), u2 =

1√
2
(−1, 0, 1), u3 = 1√

6
(1,−2, 1). Sometimes (as we will see tomorrow) we do not bother to

make the new basis orthonormal, but only orthogonal; in that case we can skip the steps
involving dividing certain vectors by their lengths.



We now interpret the Gram-Schmidt process in matrix terms. Given a basis v1, . . . , vn of
all of Rn, this process shows that we may replace each vi by a linear combination of itself
and various vj for j < i to produce an orthonormal basis u1, . . . , un of Rn; moreover, the
coefficient of vi in this combination is positive (more precisely, it is the reciprocal of the
length of the vector v′i defined in the above paragraph). Define an invertible matrix M
by decreeing that its i-th row is the vector vi. By our earlier work on row operations, we
know that replacing each vi by the sum of a positive multiple of itself and a combination
of earlier vj can be implemented by multipliying the matrix M by an invertible lower
triangular matrix L with positive entries along its diagonal, so that the i-th row of the
resulting matrix U = LM is the i-th vector ui of the orthonormal basis. But now we have
seen that the matrix U , having orthonormal rows, must also have orthonormal columns and
in fact must be an orthogonal matrix. We conclude that any invertible n×nmatrixM is the
product LU of a lower triangular matrix L with positive entries along its diagonal and an
orthogonal matrix U . Moreover, this product decomposition is unique, for if x1y1 = x2y2
with the xi lower triangular and the yi orthogonal, then x−12 x1− y2y−11 is both orthogonal
and lower triangular with positive entries along the diagonal, whence it is easy to check
that x−12 x1 = y2y

−1
1 = I, x1 = x2, y1 = y2. This is a special case of something called the

Iwasawa decomposition, which plays an important role in my field of representation theory.


