
Lecture 5-21

We now review the calculus we have learned since the first midterm. We have seen that the
definition of the double integral of a function of two variables over a rectangle [a, b]× [c, d]
(or of a function of n variables over an n-dimensional rectangle [a1, b1] × . . . × [an, bn]) is
a straightforward extension of the definition in the one-variable case; one partitions the
intervals defining the rectangle, uses these partitions to partition the rectangle itself into
subrectangles, multiplies the n-dimensional volume of each subrectangle by the greatest
lower and least upper bounds of the function on the subrectangle to define the lower
and upper sums of the function relative to the partition, and then takes the greatest lower
bound of all upper sums to be the integral of the function, provided that this also coincides
with the least upper bound of all the lower sums. Whenever f is integrable on a rectangle,
we can evaluate its integral as an iterated integral, in which we integrate with respect to
each of the variables in turn between the limits of that variable, treating all other variables
as constants, finally integrating a function of just one variable between constant limits to
get the final result.



This same method applies to integrals over more general regions in n-space, provided that
these regions can be defined by limits on each of the variables in turn, in such a way that
the variables occur in a certain order and the possibly variable limits for each variable
depend only on later variables (so that the limits on the last variable are constants). We
then evaluate the integral from the inside out, or from right to left, again recalling that
when we integrate with respect to one variable, all other variables are treated as constants.
We often have a choice in the order of variables of integration; we must make sure that,
once this order has been decided upon, the limits for each variable correctly reflect exactly
how large and how small that variable can get once values for the other variables on which
these limits depend have been specified. If the same function is integrated in two different
orders, the limits of integration will change, depending on the order used, but the integrand
itself will not change. Depending on both the integrand and the shape of the region of
integration, integration in one order may be much easier than integration in another; it is
up to you to work out the best order in each case.



Many regions of integration are such that it is much more natural to divide them into
smaller regions other than subrectangles; for example, if one is integrating over a disk,
then it is much easier to subdivide the disk into circular sectors, defined by constant
limits on the polar coordinates r and θ, than to subdivide the disk into subrectangles;
indeed, it is impossible to realize the disk as the union of finitely many subrectangles
(overlapping or not). At first we might think we have to reformulate our original definition
of the double integral, using circular sectors rather than disks; but fortunately this is not
necessary; instead we have a theorem which states that if the region R of integration can
be defined by the inequalities g(θ) ≤ r ≤ h(θ), a ≤ θ ≤ b (where 0 ≤ g(θ) ≤ h(θ), [a, b[⊂
[0, 2π]), then the integral of a continuous function f(x, y) over R may be expressed as∫ b
a

∫ h(θ)
g(θ)

rf(r cos θ, r sin θ) dr dθ; this is the change of variable formula for polar coordinates.

The extra factor r in the integrand arises because the area of a circular sector defined by
the inequalities a ≤ r ≤ b, c ≤ θ ≤ d in polar coordinates is obtained by integrating
r with respect to r and θ in turn between the respective limits a, b and c, d. Thus, for
example, if one wants to compute the mass of a plate occupying the unit disk in the xy-
plane whose density at the point (x, y) is proportional to the cube of its distance to the
center (0, 0) of the disk, with constant of proportionality k, then this mass is given by∫ 2π

0

∫ 1

0
kr4 dr dθ = 2πk/5.



There are two main three-dimensional analogues of polar coordinates, namely cylindrical
and spherical coordinates. Cylindrical coordinates are labelled r, θ, z, where r, θ are the
polar coordinates of the point projected to the xy-plane and z is the same as in Cartesian
coordinates. The change of variable factor in the integration formula is again r, as for
polar coordinates. Spherical coordinates are labelled ρ, φ, θ; here ρ is distance form the
origin, φ is latitude, measured down from the north pole, and θ is the same as in cylindrical
coordinates; note that φ runs from 0 to π only, while θ runs all the way from 0 to 2π. The
change of variable factor for spherical coordinates is ρ2 sinφ, arising as the integrand in
the formula for the volume of a spherical wedge defined by constant limits on ρ, φ, and θ.



Finally we considered general coordinate changes. Given a one-to-one differentiable map
g with a differentiable inverse from one region R ⊂ Rn to another one R′, let |J | be the
absolute value of the Jacobian matrix of g; then the integral of a function f defined on R′

equals the integral of the composite function f(g) times |J | over R. We use the absolute
value of the determinant of the Jacobian matrix rather than the determinant itself because
we interpret it as the ratio of the n-dimensional volumes of two regions in Rn. If g is not
one-to-one but the n-dimensional volume of the subset S′ of R′ consisting of all points y
with f(x) = y for at least two x ∈ R is 0, then the change of variable formula still holds.

The midterm tomorrow will once again be taken on Canvas; I will email it to you by 11:25
or so and you have until 12:25 to turn it in. Good luck.


