
Lecture 5-20

We now review for the midterm on Friday. We have seen that given any linear transforma-
tion f : V →W from one finite-dimensional vector space V to another one W and a choice
of bases B,B′ for V,W , respectively, we get a unique matrix A of f relative to B and B′,
obtained as follows: if the basis B is {b1, . . . , bn} and B′ is {b′1, . . . , b′m}, then each f(bi)
is a linear combination of b′j , say

∑m
i=1 aijb

′
j . Then aij is the ij-th entry of A, so that

the ith column of A consists of the coefficients appearing when f(bi) is written as a linear
combination of the b′j . In class we have mostly concentrated on the case where V = W
and bi = b′i for all i, so that the bases B and B′ coincide; but you should be aware of the
more general setup above and be prepared to compute with it. We have seen that two
n×n matrices A,B are similar if and only if they represent the same linear transformation
relative to two different bases, or if and only if B = P−1AP for some invertible n × n
matrix P . The corresponding criterion for two m× n matrices A,B to represent the same
linear transformation, each relative to its own bases of both V and W , is that B = PAQ,
where P is an invertible m×m matrix and Q is an invertible n× n matrix.



Returning to the case of a linear transformation f : Rn → Rn, say with matrix A relative
to the standard basis of Rn, it would be desirable to find a basis B of Rn that is well
adapted to f (rather than just using the standard basis of Rn). More precisely, if we
can find such a basis B = v1, . . . , vn consisting of eigenvectors of f , say with respective
eigenvalues λ1, . . . , λn, then the matrix of f with respect to this basis would be D =
λ1

λ2
. . .

λn

, a diagonal matrix; we call either f or A diagonalizable in this

case. We then have P−1AP = D, where P is the matrix whose i-th column is vi (this
matrix is guaranteed to be invertible); we also say that A is similar to D. In general,
similar matrices have the same eigenvalues with the same multiplicities (both algebraic
and geometric), and thus the same trace (the sum of the eigenvalues) and determinant
(their product), but not the same eigenvectors. A matrix A is diagonalizable if and only if
all of its eigenvalues a have the same geometric multiplicity (dimension of the a-eigenspace)
and algebraic multiplicity (largest k for which (a−λ)k divides the characteristic polynomial
p(λ) = det(A − λI) of A); note that in general the roots of the characteristic polynomial
are exactly the eigenvalues of A, each having geometric multiplicity at least 1.



Although many square matrices are not diagonalizable, we have learned that every real
symmetric n × n matrix A is diagonalizable, in fact by an orthogonal matrix U , so that
UTAU = U−1AU = D, a real diagonal matrix. More generally, the same is true of any
complex Hermitian matrix A, that is, one for which ĀT = A, with U replaced by a unitary
matrix (for which U−1 = ŪT ). The matrix A is positive definite if and only vTAv > 0 for
every nonzero v ∈ Rn (or v̄TAv > 0 for all nonzero v ∈ Cn, if A is Hermitian), where v
is written as a column vector; in turn this happens if and only if all eigenvalues of A are
positive. If A is real and symmetric, then it is also true that A is positive definite if and
only if all of its pivots are positive, provided that every row operation on A performed
in order to identify these pivots is followed immediately by the corresponding column
operation, so that A remains symmetric throughout. Thanks to the preservation not only
of the determinant detA of A itself, but also of the determinant detA(i) of the upper left
i× i submatrix of A for all i ≤ n, whenever a multiple of a higher row of A is added to a
lower one, we can furthermore say that A is positive definite if and only if detA(i) > 0 for
all i ≤ n. A is negative definite if and only if detA(i) is negative for i odd, but positive for
i even. Assuming that detA(i) 6= 0 for any i, any other pattern of signs among the detA(i)

implies that A is indefinite, having both positive and negative eigenvalues. These criteria
for positive and negative definiteness and indefiniteness apply equally well to Hermitian
matrices A.



Dot products and orthogonality, which play a crucial role in proving the results of the last
paragraph, are also crucial to producing the best possible approximate solutions (in the
sense of least squares) to inconsistent linear systems AX = B. Given any such system,
its normal equations are those of the system ATAX = ATB, which is always consistent.
If the matrix A has full rank, the normal equations will have a unique solution X, which
will uniquely minimize the square length ||AX − B||2. In general, the normal equations
will have a unique shortest solution X, again minimizing the square length ||AX−B||2. A
common application in which the matrix A always has full rank is least squares polynomial
fitting to data points; given any n+1 data points (x1, y1), . . . , (xn+1, yn+1) with xi 6= xj for
i 6= j, and a degree d ≤ n, there is a unique polynomial pd of degree at most d which gives
the best possible fit to the data points, so that the sum

∑n+1
i=1 (pd(xi)− yi)2 is minimized.

The coefficient matrix is a Vandermonde matrix and always has full rank.



Whenever the square matrix A is diagonalizable, so that A = P−1DP with D diagonal,
it is easy to compute arbitrary integral powers of A, since Ak = P−1DkP . In fact, in the
special case where the diagonal entries of D are real and positive, we can use the equation
Aα = P−1DαP to define arbitrary real powers Aα of A, where Dα is computed by raising
each of its diagonal entries to the power α. In particular, positive definite matrices always
have uniquely defined square roots that are also positive definite.


