
Lecture 5-19

Given an n× n matrix A, we showed last time how to define and compute its exponential
eA; we also showed that the law of exponents esAetA = e(s+t)A holds for multiples of A
(but not in general), We can think of etA as the t-th power of eA; note that the set of
all matrices etA as t runs over R is a subgroup (called a one-parameter subgroup) of the
group GL(n,R) of invertible n× n matrices over R under multiplication. Now in general
we cannot define Bt if B is a square matrix and t ∈ R is not an integer; even if we are
lucky enough to have B = eA for some A, it is easy to have eA1 = eA2 but etA1 6= etA2 .
(In fact, we run into the same problem for complex numbers z; even though every complex
number has a square root, there is no good uniform way to define a square root function
on the entire complex plane.) If however A = P−1DP and D is diagonal with positive
real diagonal entries d1, . . . , dn, then it is natural to define At for any t ∈ R as P−1DtP ,
where Dt is the diagonal matrix with diagonal entries dt1, . . . , d

t
n, using the definition we

gave in the fall of xt for any positive x. Moreover, it is not difficult to show that a matrix
M commutes with D if and only if it commutes with Dt for any t 6= 0, since M turns
out to commute with D if and only if its ij-th entry mij = 0 whenever di 6= dj and
dti = dtj for t 6= 0 if and only if di = dj . It follows that if P−1DP = Q−1DQ, then

P−1DtP = Q−1DtQ, so we can define At unambiguously in this setting at P−1DtP .



If A = P−1DP is as above, then by using the Jordan form, one can show for any positive
integer n that any matrix B with positive eigenvalues satisfying Bn = A is necessarily
diagonalizable and in fact we must have B = P−1D1/nP . Thus diagonalizable matrices
with positive real eigenvalues have unique n-th roots with positive eigenvalues for any
nonzero integer n. In particular, positive definite (symmetric) matrices have unique posi-
tive definite n-th roots for every n > 0, just as positive real numbers have unique positive
n-th roots for any such n. In fact, even positive semidefinite symmetric matrices (whose
eigenvalues, by definition, are all nonnegative) have uniquely defined n-th roots for all n.
Positive definite matrices have the additional property that their t-th powers are uniquely
defined and positive definite for all t ∈ R; positive semidefinite matrices have the same
property if t ≥ 0. All of this unfortunately breaks down even for symmetric matrices that
are not positive semidefinite. For example, the 2 × 2 matrix A = −I has many square
roots among real 2× 2 matrices, but no 2× 2 real symmetric square root, since any such
root would have to have eigenvalues ±i, but no real symmetric matrix has imaginary
eigenvalues. The existence of unique positive definite square roots for positive semidefinite
matrices will play an important role in the lectures next week, where we introduce our
final new topic, namely the singular value decomposition.



In a similar way one can show that positive definite matrices P have unique symmetric
logarithms A; that is, there is a unique symmetric A with eA = P (though A need not
be positive definite, as A will have a negative eigenvalue whenever P has an eigenvalue
less than 1). Not all exponential matrices eA will have positive eigenvalues, however, since
the matrix A can have complex eigenvalues λ and then the eigenvalue eλ of eA need not
even be real. Any real n × n matrix A whose negative real eigenvalues occur with even
multiplicity turns out to admit a logarithm. So does any matrix I + B where the n × n
matrix B has all entries less than 1/n in absolute value. To see this fact, recall the power

series
∑∞
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n+1 for ln(1 + x), which converges for x ∈ R with |x| < 1. Substituting
the matrix B for the variable x and using the previously observed fact that the entries of
any power Bk are bounded in absolute value by nk−1ck, where c is an upper bound for
the absolute values of the entries of B, we see that this series converges entry by entry
to the desired logarithm for I + B. More generally, any power series

∑
anx

n in x with
a positive radius of convergence R will also converge entry by entry if a square matrix A
whose entries are all less than R/n in absolute value is substituted for x. Such power series
other than the exponential one, however, have not found many applications to date.


