
Lecture 5-18

We now combine our earlier work with infinite series with linear algebra, considering a
particular infinite series of matrices. Let A be an n × n matrix. The powers Ak of A all
make sense and are n× n matrices for k ≥ 0 (we take A0 to be the identity matrix I), so

we can form the infinite series eA =
∑∞
k=0

Ak

k! . This series converges for any A (that is, the
series for each of its entries converges), since if the entries of A are bounded in absolute
value by M , then an easy induction shows that the entries of Ak are bounded by nk−1Mk

and
∑

nk−1Mk

k! converges for any M , so that the series for any entry of eA converges
absolutely (by comparison with the series just mentioned) and so converges. Letting t be

a real variable we see by differentiating the matrix-valued power series eAt =
∑∞
k=0

(At)k

k!
term by term (and entry by entry) that (eAt)′ = AeAt; here we differentiate a matrix-
valued function by differentiating each of its column vectors (and thus each of its entries)
in turn.



Hence every column of eAt, regarded as a vector-valued function ~v(t) of t, satisfies the
system of equations ~v′(t) = A~v(t) (note the analogy between this and a linear system of
equations). Moreover, given any two n × n matrices A,B, we have the law of exponents
eA+B = eAeB , provided that AB = BA; indeed, we can prove this law for real numbers
directly from the power series for ex, using the binomial theorem, and this theorem carries
over to give the obvious formula for any power (A + B)k whenever A and B commute.
In particular, we have eAseAt = eA(s+t) for any real numbers s, t; this shows that the
matrix eAt is always invertible with inverse e−At. Thus the columns of the matrix eAt

provide n linearly independent vector-valued solutions to the system ~v′(t) = A~v(t), whence
(analogously to any n linearly independent solutions to a linear n-th order homogeneous
differential equation) the general solution to ~v′(t) = A~v(t) is a constant linear combination
of the columns of eAt. We call eAt a fundamental matrix for the system ~v′(t) = A~v(t).



How can the exponential eAt be computed? The clue comes from our earlier observation
that if a matrix A is diagonalizable, so that A = P−1DP for some diagonal matrix D, then
Ak = P−1DkP for all k ≥ 0. It follows at once that eAt = P−1eDtP in this case; moreover,
an easy direct computation shows that if d1, . . . , dn are the diagonal entries of D, then eD

is again diagonal, with diagonal entries ed1 , . . . , edn (and similarly of course for eDt). In
particular, the determinant det eA = det eD = et, where t is the trace of A. In fact it is not
difficult to show that this last formula holds for any square matrix A, diagonalizable or
not, and in fact the eigenvalues of eA are exactly the eλ as λ runs through the eigenvalues
of A, each occurring with its algebraic multiplicity.



How can we compute eAt if A is not diagonalizable? We still have eAt = P−1eBtP if
A = P−1BP , so we look for a matrix B similar to A such that eBt can be computed
directly. Here a tool called the Jordan (canonical) form (which we will state but not prove)
comes into play. It turns out that any A is similar to what is called a block diagonal matrix
J with square matrices J1, . . . , Jk marching down the main diagonal from left to right and

all other entries zero, where Ji =


λi 1

λi 1
. . .

. . .

λi 1
λi

 has λi as its unique diagonal

entry, ones above the diagonal, and zeroes everywhere else.



The Ji are called Jordan blocks; A is diagonalizable if and only if all of its Jordan blocks
has size 1× 1 (so that there is no diagonal above their main diagonals). Any Jordan block
Ji may be written as the sum λiI + Ni of the scalar matrix λiI (where λi is the unique
diagonal entry of Ji) and N is a matrix with zeroes on the diagonal, ones above it, and
zeroes everywhere else. The matrices λiI and Ni commute and an easy computation shows
that Nni

i = 0 if Ni has size ni × ni. Hence the binomial theorem applies in computing
the powers (λiI +Ni)

k and only finitely many powers Nk
i are nonzero. Thus it is not too

hard to compute the exponentials eJit; moreover, it is easy to see that eJt is again block
diagonal with the eJit as its blocks.



Note that the nondiagonalizable matrix A =

(
1 1
0 1

)
that we saw three weeks ago is the

simplest example of a Jordan block (having size 2 × 2). One remarkable consequence of
the Jordan form is that up to similarity there are only finitely many n×n matrices having
only one fixed eigenvalue α. This is because the Jordan form of any such matrix has α as
its only diagonal entry and the numbers of rows of its Jordan blocks have to add to n, so
there are only finitely many possibilities for its Jordan blocks.


