
Lecture 5-15

We conclude our treatment of multivariable integration with some remarks about setting
up limits in multiple integrals. We have already seen that we often have a choice in the
order of variables of integration; it is important to make sure that the limits of integration
reflect this order. Note that the outermost limits must always be constant, so that the final
answer is a number. The next to outermost limits are allowed to depend on the outermost
variable; the next limits to these are allowed to depend on the two outermost variables, and
so on, with the innermost limits allowed to depend on the greatest number of variables.
It is often best to set up the limits from left to right even though any iterated integral
is always evaluated from right to left. Thus in integrating some function f(x, y, z) over
the tetrahedron defined by the inequalities x, y, z ≥ 0, 2x+ 3y + 4z ≤ 4, if we integrate in
the order dx dy dz, then the outermost limits on z should be 0 and 1, since on this overall
region these are the smallest and largest values that z can take. For each fixed z in this
range, y runs from 0 to 4−4z

3 ; if both z and y are specified, then x runs from 0 to 4−4z−3y
2 .

If we integrated in the order dz dy dx instead, then the x limits would have been 0 and 2,
the y limits would have been 0 and 4−2x

3 , and the z limits would have been 0 and 4−2x−3y
4 .

Notice also that the integrand f(x, y, z) is not affected by the order of integration.



If the upper or lower limits of integration for a given variable are given by a nonuni-
form formula then the integral must be broken up into two or more subintegrals which
are added to obtain the final result. For example, we have already seen that in inte-
grating a function f(x, y) over the triangle T in the xy-plane with vertices (0, 0), (1, 1),
and (2, 0), then if we integrate in the order dx dy then we get just one double integral,

namely
∫ 1

0

∫ 2−y
y

f(x, y) dx dy; there is a uniform formula for the leftmost and rightmost

boundaries of this region of integration. If we integrate the same function f(x, y) in
the other order, then the double integral must be broken into two subintegrals, namely∫ 1

0

∫ x
0
f(x, y) dy dx+

∫ 2

1

∫ 2−x
0

f(x, y) dy dx; there are two formulas for the upper boundary
of the region of integration, depending on the value of x.



We give an example of a tricky volume computation that involves subdividing the region of
integration in a more subtle way. Suppose that we have three long cylindrical pipes of unit
radius placed so that their axes of symmetry are the coordinate axes. What is the volume
of their intersection? The pipes are defined by the inequalities x2 + y2 ≤ 1, x2 + z2 ≤
1, y2 + z2 ≤ 1 and we want to find the volume of the set S of points satisfying all three of
these inequalities. If z2 ≥ 1/2, then the constraints on x and y are x2 ≤ 1−z2, y2 ≤ 1−z2;
note that then x2 + y2 ≤ 1 automatically. We get analogous constraints on x and z if
y2 ≥ 1/2, or on y and z if x2 ≥ 1/2. There are no points in S such that two of x2, y2, z2

exceed 1/2. Finally, if x2, y2, z2 ≤ 1/2, then automatically x2 + y2, x2 + z2, y2 + z2 ≤ 1.
We have divided our set S into four subsets which overlap only on a set of measure zero in
R3; it only remains to add the volumes of each subset. By symmetry the first three subsets

have the same volume. We compute this volume as 2
∫ 1√

2/2

∫√1−z2
−
√
1−z2

∫√1−z2
−
√
1−z2 dx dy dz =

2
∫ 1√

2/2
4(1 − z2) dz = 16

3 − 4
√

2 + 8
√
2

12 = 16
3 −

10
3

√
2; here we get the initial factor of 2

since z2 ≥ 1/2 if and only if either z ∈ [
√

2/2, 1] or z ∈ [−1,−
√

2/2] and the integral
with z ∈ [−1,−

√
2/2] is the same as the one with z ∈ [

√
2/2, 1] by symmetry. The total

volume of all three is thus 16 − 10
√

2. The last subset is the product of three intervals
[−
√

2/2,
√

2/2] so has volume 2
√

2. Adding up, we find that the total volume of S is
16− 8

√
2. A similar but easier computation shows that the volume of the set R of points

(x, y, z) in R3 with x, y, z ≥ 0, x+ y, x+ z, y + z ≤ 1 is 1/4.



We close with the last example in §17.9 of the text (p. 928). This asks us to find the
volume of the solid T enclosed by the surface with equation (x2 + y2 + z2)2 = 2z(x2 + y2).
In spherical coordinates the bounding surface takes the form ρ = 2 sin2 φ cosφ. Since z
takes only positive values on T , the limits on φ are 0 and π/2, while the limits on ρ
are 0 and 2 sin2 φ cosφ; those on θ are 0 and 2π as usual. Hence the desired volume is∫ 2π

0

∫ π/2
0

∫ 2 sin2 φ cosφ

0
ρ2 sinφdρ dφ dθ = (8/3)(

∫ 2π

0
dθ)(

∫ π/2
0

(sin7 φ cosφ− sin9 φ cosφ) dφ =
(2/15)π.



Next week we will return to linear algebra, picking up some additional topics from the Treil
notes. We will also treat exponentials of square matrices, which combine linear algebra
and differential equations in a very nice way.


