
Lecture 5-14

We illustrate the general change of variable formula for multiple integrals in a couple of
examples. First we compute the area enclosed by the astroid, which has the equation
x2/3 + y2/3 = a2/3, where a is a positive constant. (This curve is called the astroid be-
cause its graph looks like a star.) Although we can solve the equation for y explicitly in
terms of x, it is not feasible to antidifferentiate the resulting function, so we use a more
roundabout method. Using modified polar coordinates r, θ, with the change of coordi-
nate formulas x = r cos3 θ, y = r sin3 θ we find that the equation of the astroid reduces
to r = a. With these coordinates the Jacobian determinant |∂(x, y)/∂(r, θ)| becomes
3r2(cos3 θ sin2 θ cos θ+ sin3 θ cos2 sin θ) = 3r2 cos2 θ sin2 θ = (3/4)r2 sin2 2θ; the limits on r
and θ in the region in rθ-space mapping to the one enclosed by the astroid are 0 ≤ r ≤
a, 0 ≤ θ ≤ 2π. Accordingly the desired area is

∫ 2π

0

∫ a
0

(3/4)r2 sin2 2θ dr dθ = (3/8)πa2; the
astroid encloses exactly 3/8 of the area of the circle into which it is inscribed.



Our second example is trickier; it serves to illustrate another useful general fact about
Jacobian determinants. This is Example 2 on p. 933 of the text, but we will use a slicker
method than the one used there. We are asked to compute the integral

∫
Ω
xy dx dy, where Ω

is the region is the region in the first quadrant bounded by the curves x2−y2 = 1, x2−y2 =
4, x2 + y2 = 4, x2 + y2 = 9. Here we reverse the usual procedure; instead of realizing Ω
as the image of a simpler region under a 1-1 differentiable map from R2 to R2, we go the
other way and exhibit such a map taking Ω to a simpler region. This map is fairly easy to
guess; it sends (x, y) to (x2 +y2, x2−y2), thereby mapping Ω to the rectangle [4, 9]× [1, 4].
We observe that we can indeed solve uniquely for x, y ≥ 0 in terms of u = x2 + y2 and
v = x2−y2, but (unlike the text) we do not bother to do this explicitly. Instead we calculate
the Jacobian determinant J = |∂(u, v)/∂(x, y)|, obtaining |(2x)(−2y) − (2y)(2x)| = 8xy.
But now we were supposed to express the integrand xy in terms of the new coordinates
u, v and also work out the other Jacobian determinant J ′ = |∂(x, y)/∂(u, v)|. Instead of
doing this directly we argue that the product of the Jacobian matrices ∂(u, v)/∂(x, y) and
∂(x, y)/∂(u, v) is ∂(u, v)/∂(u, v) = I,by the chain rule, whence the Jacobian determinants
J, J ′ are multiplicative inverses. Hence the product xyJ ′ of the original integrand xy and

J ′ is the constant 1/8 and the desired integral is just
∫ 9

4

∫ 4

1
(1/8) du dv = 15/8. Note that

had the integrand been the supposedly simpler constant function 1, the integral would
have been harder rather than easier to evaluate.



The reasoning used in the second example helps to illustrate an advanced theorem closely
related to the Implicit Function Theorem mentioned in a couple of earlier lectures. Note
that in the statement of the general change of variable formula it is crucial that the function
g mapping one of the regions R of integration to the other one R′ be one-to-one (though
actually it is enough if it is one-to-one when restricted to a subset S of R whose complement
in R has measure zero and maps it onto a subset S′ of R′ whose complement also has
measure zero; consider the polar coordinate transformation g : (r, θ) → (r cos θ, r sin θ),
which maps the nonclosed rectangle (0, 1] × [0, 2π) in a one-to-one fashion onto the unit
disk with the origin removed). For example, it would be disastrous to compute the area of
the unit circle by integrating r dr dθ over say the closed rectangle [−1/2, 1]× [0, 3π], even
though this rectangle is mapped onto the unit disk by g. It is therefore of importance to
know when a differentiable map from Rn to itself has a differentiable inverse.



The Inverse Function Theorem states that if a continuously differentiable map g sending
(u1, . . . , un) to (x1, . . . , xn) is such that |∂(x1, . . . , xn)/∂(u1, . . . , un)| is nonzero at the
point ~a ∈ Rn, then there are neighborhoods N,N ′ of ~a,~g(~a), respectively, such that the
restriction of g to N is a one-to-one differentiable function from N onto N ′ with a differ-
entiable inverse. We express this in words by saying that any differentiable function with
a nonzero Jacobian determinant at a point admits a local differentiable inverse. It need
not admit a global differentiable inverse, as the example g(x, y) = (ex cos y, ex sin y) shows;
this function has Jacobian determinant e2x 6= 0 at (x, y) and yet g(x, y) = g(x, y + 2kπ)
for any integer k. Thus the change of variable formula would not apply (for example) to
an integral over the rectangle [0, 1]× [0, 3π] with this function g.


