
Lecture 5-12

We give an example of a linear change of variable which quite unexpectedly is applied
to evaluate the sum of an important series. Consider the innocent-looking integral I =∫ 1

0

∫ 1

0
1

1−xy dx dy. (This is actually an improper integral, since the integrand becomes

unbounded as (x, y) → (1, 1), but we will soon see that it converges.) On the one
hand, recognizing the integrand as the sum of the infinite series

∑∞
n=0(xy)n, we get

I =
∑∞
n=0

1
(n+1)2 ; we have seen that this sum converges but have not yet computed its

value. Now, on the other hand, if we make the change of variable x = u + v, y = u − v,
so that u = 1

2 (x+ y), v = 1
2 (x− y), we find that the integrand becomes f(uv) = 1

1+u2−v2 .
The limit of integration are a bit trickier to work out. Clearly u runs from 0 to 1; for
fixed u ∈ [0, 1/2], v runs from −u to u, considering the southern and western bound-
aries of the unit square [0, 1] × [0, 1]. If instead u is fixed in [1/2, 1], then v runs from

u − 1 to 1 − u. Since we have

(
x
y

)
=

(
1 1
1 −1

)(
u
v

)
and the matrix has deter-

minant −2, we finally get I = 2(
∫ 1/2

0

∫ u
−u f(u, v) dv du +

∫ 1

1/2

∫ 1−u
u−1 f(u, v) dv du. Now

it is easy to check that g(u, v) = 1√
1−u2

arctan v√
1−u2

is a v-antiderivative of f(u, v),

whence I = 2(
∫ 1/2

0
g(u, v)|v=uv=−u du+

∫ 1

1/2
g(u, v)|v=1−u

v=u−1) du. We now make the substitution

u = sin θ, du = cos θ dθ in the first integral, replacing it by
∫ π/6
0

2θ dθ = π2/36. In the
second integral, we substitute u = cos θ, du = − sin θ dθ and use the half-angle formula

tan θ
2 = 1−cos θ

sin θ , replacing this integral by
∫ π/3
0

θ dθ = π2/18. Adding the two integrals and

multiplying this sum by 2, we get I =
∑∞
n=1

1
n2 = π2/6, a famous result of Euler in the

late eighteenth century. It is remarkable, by the way, that the sum
∑∞
n=1

1
n2k is known

for all integers k ≥ 1 but the single sum
∑∞
n=1

1
n3 is not known (though it is known to be

irrational). If one could somehow evaluate the integral
∫ 1

0

∫ 1

0

∫ 1

0
1

1−xyz dx dy dz then that
would give the sum; but no one has figured out how to do this in over 200 years. Do it as
an exercise (just kidding).



As you might imagine there are many useful changes of variable that are nonlinear, each
of them giving rise to a change of variable integral formula; indeed, we have already seen
polar coordinates as an example in two dimensions. The cylindrical coordinate system in
three dimensions is the closest analogue there to polar coordinates; in it we have three
coordinates r, θ, z, such that z in cylindrical coordinates is the same as z in Cartesian
coordinates, while r, θ are determined by x, y exactly as for polar coordinates. Thus the
change of coordinate formulas are x = r cos θ, y = r sin θ, z = z. (The reverse change
of coordinate formulas, giving r, θ, z in terms of x, y, z are much more awkward and are
rarely used.) Now the volume of a cylindrical wedge, defined by the inequalities a ≤
r ≤ b (with a, b both positive), c ≤ θ ≤ d (with [c, d] ⊂ [0, 2π]) and finally e ≤ z ≤
f is easily seen to be (1/2)(b2 − a2)(d − c)(f − e) (this cylindrical wedge is just the
Cartesian product of a polar wedge and a closed interval), which in turn is the integral∫ f
e

∫ d
c

∫ b
a
r dr dθ dz. Accordingly, by a simple adaptation of the corresponding argument

for polar coordinates, we get the following result: given a continuous real valued-function
f(x, y, z) defined on a region R specified in cylindrical coordinates by the inequalities
a ≤ θ ≤ b, g(θ) ≤ r ≤ h(θ), p(r, θ) ≤ z ≤ q(r, θ), the triple integral of f over R is given by∫ b
a

∫ h(θ)
g(θ)

∫ q(r,θ)
p(r,θ)

rf((r cos θ, r sin θ, z)dz dθ dr.



We give a couple of examples. First, suppose we have a solid occupying a right circular
cylinder of base radius R and height h, such that the density of the solid at any point is
proportional to its height above the xy-plane. What is the mass of the solid? Writing k for

the proportionality constant, this mass M is given by the integral
∫ 2π

0

∫ R
0

∫ h
0
krz dz dr dθ =∫ 2π

0

∫ R
0

(1/2)krh2 dr dθ = 2π(1/4)kR2h2 = πkR2h2/2. Second, we ask for the volume V of

the “ice cream cone” bounded between the upper hemisphere z =
√
R2 − x2 − y2 and be-

low by the cone z =
√
x2 + y2 tanα. This volume consists of the region between the upper

hemisphere and the xy-plane lying over the diskD of radiusR cosα in the xy-plane centered
at the origin with the cylinder with base D and height R cosα removed and replaced by

an inverted cone with vertex at the origin. Hence V = (
∫ 2π

0

∫ R cosα

0

∫√R2−r2
0

r dz dr dθ)−
πR3 cos2 α sinα+(1/3)πR3 cos2 α sinα, which works out to be (2π/3)R3(1−cosα). When
we introduce spherical coordinates, we will see that this last region is a wedge in spherical
coordinates, given as the Cartesian product of intervals in the spherical coordinates ρ, φ,
and θ. We will use this computation to derive the change of variable factor for spherical
coordinates.


