
Lecture 5-11

We now consider integrals of functions of more than two variables. The basic idea is a
straightforward generalization of what we have done for two variables: given a real-valued
function f(x,1 , . . . , xn) defined on an n-dimensional rectangle R = [a1, b1]× · · · × [an, bn],
we partition each of the intervals [ai, bi], use these partitions to divide R into subrectangles,
multiply the n-dimensional volume of each of these subrectangles S (the product of the
lengths of the subintervals of [ai, bi] defining them) by the greatest lower bound of f on S,
and add the results to define the lower sum of f relative to the partition; then similarly
define the upper sum of f relative to the same partition, replacing greatest lower bounds
by least upper ones. As before, all lower sums are bounded above by all upper sums.
Then f is integrable over R if and only if the greatest lower bound of all the upper sums
coincides with the least upper bound of the lower sums, in which case their common value
is called the integral of f over R and denoted

∫
R
f dx1 . . . dxn. We can compute this via

an iterated integral, integrating with respect to each of the variables in any order, using
the appropriate interval of integration for each. Equivalently, if the last coordinate xn of
all points in R ranges over the closed interval [a, b] and if we can work out the integral
I(x) of f(x1, . . . , xn) over the cross-section of R consisting of all points with xn = x, for

all x ∈ [a, b], then
∫ b
a
I(x) dx will be the integral of f(x1, . . . , xn) over all of R.



In particular, the n-dimensional volume of any region R in Rn is (by definition) the integral
of the constant function 1 over this region, or rather the integral of the extension of
this function to an n-dimensional rectangle R′ containing R over R′, where the extended
function is defined to be 0 off of R. Given any region R ⊂ Rn, let the new region R′

be obtained from R by replacing every (x1, . . . , xn) ∈ R by (a1x1, . . . , anxn), where the
ai are nonzero constants. Introduce new variables u1 = a1x1, . . . , un = anxn. Given
an integrable real-valued function f on R, let g be the induced function on R′, defined
via g(u1, . . . , un) = f(x1, . . . , xn). Then g is integrable over R′ and

∫ ′
R
g du1 . . . dun =

|a1 . . . an|
∫
R
f dx1 . . . dxn. As in the case of two variables, we formally write du1 . . . dun =

|a1 . . . an| dx1 . . . dxn, as before using the absolute value signs because we are now always
putting the smaller of our two limits of integration for each variable on the bottom.



A standard region in n-space arising often in applications is the unit n-simplex Sn, defined
by the inequalities xi ≥ 0,

∑
xi = 1. We will work out a formula for the volume Vn of Sn,

proving it by induction on n. The last coordinates of all points in Sn run over the unit
interval [0, 1]; those points of Sn having last coordinate a fixed x ∈ [0, 1] are such that their
first n − 1 coordinates are those of the rescaling of Sn−1 with all coordinates multiplied

by 1 − x. Accordingly, Vn =
∫ 1

0
(1 − x)n−1Vn−1 dx = Vn−1/n, whence Vn = 1/n! for all

n (since it is easy to compute directly that V1 = 1). We can work out the volume Un of
the n-dimensional unit ball Bn = {~x ∈ Rn : ||~x|| = 1} by a similar but more elaborate
computation using polar coordinates. Here there are two base cases; we compute directly
that U1 = 2, U2 = π. For fixed values of the last two coordinates of a point in Bn
corresponding to the polar coordinates r, θ, we find that the remaining n − 2 coordinates
are those of a point in the rescaling of Bn−2 by

√
1− r2 in each coordinate. Accordingly, we

have Un =
∫ 2π

0

∫ 1

0
r(
√

1− r2)n−2Un−2 dr dθ = (2π/n)Un−2. For even n = 2m we deduce
the elegant formula U2m = πm/m! For odd n = 2m + 1 we have the less elegant formula

U2m+1 = 2m+1πm

1·3···2m+1 . In particular we have Un → 0 as n→∞; this is not surprising when

one bears in mind that the constraint
∑
x2i = 1 becomes more and more restrictive as the

number n of variables gets large. (Similarly, of course, the volume Vn of Sn also goes to 0
as n→∞.)



We now want to investigate linear changes of variable that are more complicated than
rescalings. Specifically, we fix an invertible n × n matrix A and define new variables

u1, . . . , un by decreeing that


u1
u2
·
·
·
un

 = A


x1
x2
·
·
·
xn

. Given a region R in Rn, replace each

(x1, . . . , xn) ∈ R by (u1, . . . , un), thereby obtaining a new region R′. Given an integrable
function f on R, we define a new function g on R′ by setting g(u1, . . . , un) = f(x1, . . . , xn);
this makes sense because the map f sending (x1, . . . , xn) to (u1, . . . , un) is one-to-one and
onto from R to R′. We want to relate I =

∫
R
f dx1 . . . dxn to J =

∫
R′ g du1 . . . dun. As

you might guess by now, the beautiful relationship is that J = |detA|I, the absolute value
of the determinant of A times I. To prove this it suffices by the argument used in the
rescaling case to show that any subrectangle S ⊂ Rn is such that the n-volume of f(S)
is |detA| times the volume of S. By rescaling S we may assume that it is the unit cube
Un = [0, 1] × . . . × [0, 1]. Now we know that an invertible matrix A is the product of
elementary matrices E. If we can prove this result for the linear map g corresponding to
any such matrix E, then it follows by composition of linear maps and the product rule for
determinants that it holds for f . But now this is clear. There are three kinds of elementary
matrices, each obtained from the identity matrix either by interchanging two rows of the
identity matrix I, or multiplying a row of I by a nonzero scalar, or adding a multiple of
one row of I to another. In the first case Un is sent to itself by g and |detE| = 1; the
second case is a rescaling that we have already considered; and in the third case g(Un) is
the region between two graphs of functions with constant difference one on the unit cube
Un−1 in one lower dimension, whence again g(Un) has n-volume equal to detE = 1, as
desired.


