
Lecture 5-1

By now (as promised) we have seen and used dot products quite a bit in linear algebra.
So far, they have been used primarily as a tool to prove results about matrices; we now
study them in their own right. Let S be a subspace of Rn and let S⊥, the orthogonal
complement of S, consist of all v ∈ Rn with v ·w = 0 for all w ∈ S. We have already seen
that S ∩ S⊥ = 0, since any v ∈ S ∩ S⊥ satisfies v · v = 0. (Note that this does not hold if
R is replaced by C, wince we can have v · v = 0 for nonzero v ∈ Cn. One should therefore
replace the dot product in this case by the Hermitian inner product (v, w).) Fixing a basis
b1, . . . , bm of S, we have w ∈ S⊥ if and only if bi·w = 0 for all i, whence S⊥ may be regarded
as the solution space to a homogeneous linear system with m independent equations, which
must have n − m free variables. Hence dimS⊥ = n − m = n − dimS. Combining our
basis b1, . . . , bm of S with a basis c1, . . . , cn−m of S⊥, we get an independent set, since if
any combination c of the ci equals a combination of the bi, then c ∈ S ∩ S⊥ = 0. This
set must therefore be a basis. The upshot of this discussion is that any vector in Rn may
be uniquely written as the sum s + t of some s ∈ S, t ∈ S⊥. We call s the orthogonal
projection of v to S. Then s the unique vector in S closest to v, for if s′ ∈ S then the
square length (v − s′) · (v − s′) = (s− s′ + t) · (s− s′ + t) = ||s− s′||2 + ||t||2, since s− s′

is orthogonal to t.
Suppose now that we are given an inconsistent system AX = B with A an m × n

matrix. Then we know that B fails to lie in the column space C of A. By the preceding
paragraph, there is a unique B′ = AX in S closest to B which is determined by the
condition that B −B′ be orthogonal to C, or equivalently that AT (B −B′) = 0, since the
rows of AT are the columns of A. Moreover, letting R be the row space of A, we know
that R and C have the same dimension and that multiplication by A sends R to C (since
R lives in Rn and A sends all of Rn to C). Now if any X ∈ R satisfies AX = 0, then X is
orthogonal to every row of A, whence X ∈ R ∩ R⊥ = 0. Consequently multiplication by
A defines a 1-1 linear map from R into C, which must therefore be onto.

A remarkable consequence of the above analysis is that there is a simple uniform way to
replace any inconsistent system by a consistent one. Given an inconsistent system AX = B,
the normal equations for this system are the ones forming the system ATAX = ATB. This
last system is indeed always consistent, since it is equivalent to AT (AX − B) = 0, which
is equivalent to saying that AX −B is orthogonal to the column space of A. Thus there is
always a unique B′ = AX satisfying this system, namely the orthogonal projection of B
to the column space of A. This projection is closer than any other AX to B If A has full
rank, then ATA is invertible and the normal equations have a unique solution for X. In
general, there can be many X’s with the same B′ = AX, but there will always be a unique
shortest shortest such X, which lies in the row space of A. We call any solution X to the
normal equations a least-squares solution to AX = B. For example, a common reason in
practice that a system AX = B is inconsistent is that it has (many) more equations than
unknowns; we call such a system overdetermined. The least squares solution is the most
commonly used approximate solution in practice.

For example, given the system AX =

 1 0
1 1
2 1

X =

 2
3
4

, we form the augmented



matrix

 1 0 2
1 1 3
2 1 4

 and row-reduce it to echelon form, obtaining

 1 0 2
0 1 1
0 0 −1

, so that

the system is inconsistent. Multiplying both sides of its by the transpose

(
1 1 2
0 1 1

)
, we

get the normal equations

(
6 3
3 2

)
X =

(
13
7

)
, whose unique solution is

(
5/3
1

)
. Plugging

these values for the variables back into the original system, we find that AX =

 5/3
8/3
13/3

,

which comes fairly close to the vector

 2
3
4

 we really wanted.

A common application is the following one. Suppose we are interested in how one
measurable quantity y depends on another one x. We perform n + 1 experiments, setting
x equal to n + 1 distinct values x1, . . . , xn+1 and measure y each time, obtaining n + 1
values y1, . . . , yn+1 (not necessarily distinct). Then a basic theorem asserts that there is
a unique polynomial p of degree at most n such that p(xi) = yi for all i. This result may
not be of much use if say n+1 = 1001, for polynomials of degree 1000 are quite difficult to
understand or even write down. One often asks instead for a polynomial of low degree, say
1 or 2, which best fits the data points (xi, yi) in the sense of least squares. We will learn
how to find such a polynomial next time by solving the normal equations of an inconsistent
system.

We close by mentioning that one can play the same game with subspaces S of Cn

rather than Rn, using the Hermitian inner product rather than the dot product, defining
for any such S its orthogonal complement S⊥ to consist of all w ∈ Cn with (v, w) = 0
for all v ∈ S; then any u ∈ Cn is equal to the sum v + w of a unique v ∈ S,w ∈ S⊥. In
practice, however, this setting occurs much more rarely than that of Rn.


