
Lecture 4-9

Last time we introduced the notion of linear independence of a set of vectors in a
vector space and showed that a linearly independent subset of Rn can have at most n
vectors in it. We also showed that any subset of Rn spanning (or generating) all of Rn has
at least n vectors in it; finally we showed that a linearly independent subset of n vectors
in Rn necessarily spans all of Rn. The same argument shows that conversely any set of n
vectors in Rn spanning Rn is necessarily independent. Indeed, if we as usual form a matrix
M whose columns are the given vectors and bring it to another matrix N in echelon form,
then there must be a pivot in every row of N for every system NX = B or MX = C to
have a solution, whence as before there is a pivot in every column of N as well and the
only solution X to either NX = ~0 or MX = ~0 is X = ~0, whence the columns of M are
indeed independent.

A set of vectors in Rn, or more generally in any vector space V , that both spans
V and is linearly independent is called a basis of V . Since no subset of Rn spanning it
can have fewer than n vectors and no independent subset of Rn can have more than n
vectors, it follows that every basis of Rn has exactly n vectors. We also saw that any
independent subset of Rn with n vectors, or snay spanning subseet of Rn with n vectors,
is automatically a basis of Rn. We express this situation by saying that Rn has dimension
n; this should surely agree with your intuition. More generally, we say that a vector space
V is finite-dimensional if it has a finite basis; if so any two bases have the same number of
elements and we call this number the dimension of V .

Any vector space V generated by a finitely many vectors vi is finite-dimensional. To see
this, note first that it is obvious if the vi are independent. If they are not, let

∑
aivi = 0 be

a dependence relation with not all ai equal to 0. Letting i be the largest index with ai 6= 0,
we can solve for vi in terms of v1, . . . , vi−1 : vi = (−1/ai)

∑i−1
j=1 ajvj . Now in any linear

combination
∑n

j=1 bjvj we can replace the term bivi in it by (−bi/ai)
∑i−1

j=1 aivi, obtaining
thereby a combination of v1, . . . , vi−1, vi+1, . . . , vn which equals the original combination.
The upshot is that v1, . . . , vn can be replaced by a proper subset of vectors with the same
span. Iterating this procedure, we eventually replace v1, . . . , vn by a (possibly) smaller
set of vectors that is independent but still spans V . Thus any generating set for a vector
space V can be shrunk to a basis of V (in fact this holds even if V has no finite basis).
Now we can generalize a previous result about Rn: given any set of vectors v1, . . . , vn
generating a vector space V and an independent subset w1, . . . , wm of V , we must have
n ≥ m. Indeed, applying the above recipe for shrinking a generating set to a basis to the
ordered set w1, v1, . . . , vn we find that this set is not independent, since some combination
of the vi equals w1. Eliminating the first vector in this list that is a linear combination of
the preceding ones, we find that that vector cannot be w1, since w1 by itself is also linearly
independent. Hence we eliminate some of the vi to get an independent set of vectors
w1, vj , . . . with the same span. Now introduce the vector w2 in the second position, to
make a new list w1, w2, vj , . . . , and repeat the above procedure; we do not eliminate w2

since w1, w2 is independent. Continue in this way; the upshot is that we eliminate at least
one vi every time we introduce a wj , and never eliminate a wj , so that indeed the number
n of available vi must exceed or equal the number m of the wj .



Thus a generating subset of a vector space V must always have at least as many
vectors as an independent subset of V . In particular, any two bases of V , since they
both generate V and are independent, must have the same number of vectors; we call this
number the dimension of V . (More generally, it can be shown that even if V is infinite-
dimensional, there is a bijection between any two bases of it.) Returning for a moment
to differential equations, we can now describe the solution space to a linear homogeneous
nth-order differential equation more precisely: it is a vector space of dimension n, and any
independent set of n solutions y1, . . . , yn to it is such that the general solution is

∑
ciyi,

where the ci are arbitrary constants. We can find a basis of the solution space by fixing a
point t0 in the domain of all the coefficients in the equation and solving the n initial-value
problems given by the equation and the conditions y(i)(t0) = 1, y(j)(t0) = 0 for j 6= i as
the indices i, j run from 0 to n− 1. In particular the functions 1, t, . . . , tn−1 form a basis
of the solution space to the equation y(n) = 0.


