Lecture 4-9

Last time we introduced the notion of linear independence of a set of vectors in a
vector space and showed that a linearly independent subset of R™ can have at most n
vectors in it. We also showed that any subset of R” spanning (or generating) all of R™ has
at least n vectors in it; finally we showed that a linearly independent subset of n vectors
in R™ necessarily spans all of R". The same argument shows that conversely any set of n
vectors in R™ spanning R" is necessarily independent. Indeed, if we as usual form a matrix
M whose columns are the given vectors and bring it to another matrix N in echelon form,
then there must be a pivot in every row of N for every system NX = B or MX = C to
have a solution, whence as before there is a pivot in every column of N as well and the
only solution X to either NX = 0 or MX = 0 is X = 0, whence the columns of M are
indeed independent.

A set of vectors in R™, or more generally in any vector space V', that both spans
V' and is linearly independent is called a basis of V. Since no subset of R™ spanning it
can have fewer than n vectors and no independent subset of R™ can have more than n
vectors, it follows that every basis of R™ has exactly n vectors. We also saw that any
independent subset of R™ with n vectors, or snay spanning subseet of R™ with n vectors,
is automatically a basis of R™. We express this situation by saying that R™ has dimension
n; this should surely agree with your intuition. More generally, we say that a vector space
V' is finite-dimensional if it has a finite basis; if so any two bases have the same number of
elements and we call this number the dimension of V.

Any vector space V' generated by a finitely many vectors v; is finite-dimensional. To see
this, note first that it is obvious if the v; are independent. If they are not, let Y a;v; = 0 be
a dependence relation with not all a; equal to 0. Letting ¢ be the largest index with a; # 0,
we can solve for v; in terms of vy,... ,v;_1 : v; = (—1/a;) Z;;ll a;vj. Now in any linear
combination >7_, bjv; we can replace the term b;v; in it by (—b;/a;) Z;;ll a;v;, obtaining
thereby a combination of vy,... ,v;—1,v;4+1,... ,v, which equals the original combination.
The upshot is that vq,... ,v, can be replaced by a proper subset of vectors with the same
span. Iterating this procedure, we eventually replace vy, ... ,v, by a (possibly) smaller
set of vectors that is independent but still spans V. Thus any generating set for a vector
space V' can be shrunk to a basis of V' (in fact this holds even if V' has no finite basis).
Now we can generalize a previous result about R™: given any set of vectors vy,... v,
generating a vector space V and an independent subset wy, ... ,w,, of V, we must have
n > m. Indeed, applying the above recipe for shrinking a generating set to a basis to the
ordered set wy,vq,...,v, we find that this set is not independent, since some combination
of the v; equals wy. Eliminating the first vector in this list that is a linear combination of
the preceding ones, we find that that vector cannot be wy, since wy by itself is also linearly
independent. Hence we eliminate some of the v; to get an independent set of vectors
w1, Vj,... with the same span. Now introduce the vector ws in the second position, to
make a new list wy,wa,v;,..., and repeat the above procedure; we do not eliminate wo
since w1, ws is independent. Continue in this way; the upshot is that we eliminate at least
one v; every time we introduce a w;, and never eliminate a w;, so that indeed the number
n of available v; must exceed or equal the number m of the w;.



Thus a generating subset of a vector space V must always have at least as many
vectors as an independent subset of V. In particular, any two bases of V', since they
both generate V and are independent, must have the same number of vectors; we call this
number the dimension of V. (More generally, it can be shown that even if V' is infinite-
dimensional, there is a bijection between any two bases of it.) Returning for a moment
to differential equations, we can now describe the solution space to a linear homogeneous
nth-order differential equation more precisely: it is a vector space of dimension n, and any
independent set of n solutions yi, ... ,y, to it is such that the general solution is ) ¢;y;,
where the ¢; are arbitrary constants. We can find a basis of the solution space by fixing a
point ty in the domain of all the coefficients in the equation and solving the n initial-value
problems given by the equation and the conditions ¥ (tg) = 1,3 (tg) = 0 for j # i as
the indices 4, j run from 0 to n — 1. In particular the functions 1,¢,...,t"~! form a basis
of the solution space to the equation y(™ = 0.



