
Lecture 4-8

We continue now to parse what we meant last time when we claimed that any subspace
of Rn looks “just like” Rm for some m ≤ n. We have seen that, given a vector space V
generated by a finite subset {v1, . . . , vm} we get an obvious onto map from Rm to V sending
a tuple (a1, . . . , am) to the combination

∑
aivi. In order to say that V really looks like Rm

in this case, however, we would like to know that this map is one-to-one as well as onto,
so that every v ∈ V takes the form

∑
aivi for a unique choice of ai ∈ R. Accordingly, we

say that vectors v1, . . . , vm in V are linearly independent, or just independent, if no two
distinct combinations

∑
aivi,

∑
bivi (i.e. no two such combinations with ai 6= bi for some

i give the same vector. Equivalently, since
∑

(ai − bi)vi =
∑

aivi −
∑

bivi, the vectors
v1, . . . , vm are linearly independent if and only if the only combination

∑
aivi which equals

0 ∈ V is the zero combination (with ai = 0 for all i). A set of vectors is dependent if it is
no independent. If S is an arbitrary subset of V then S is called linearly independent if
and only if every finite subset of S is linearly independent.

The linear independence of a set of vectors is (by far) the most useful when it appears
in conjunction with generation. We call a finite set B of vectors in a vector space V a
basis of V if it both generates V and is linearly independent, so that every vector in V is
a unique linear combination of elements in B. It should be clear from this definition that
if a vector space V admits a basis of m elements, then it really does look exactly like Rm:
in fact there is an explicit bijection from Rm to V in this case. We will say more about
this bijection in a more general context later. For now we give some examples. It is clear
that the standard basis ~ei of Rn really is a basis, where ~ei is the ith unit coordinate vector,
having 1 as its ith coordinate and 0 as the other coordinates. Outside of Rn, the powers
1, x, . . . , xn form a basis for the vector space of polynomials in one variable x of degree
at most n (together with the 0 polynomial, which by convention does not have a degree).
This vector space can also be described as the solution space to the differential equation
y(n+1) = 0. The set of all powers 1, x, x2, . . . of x is a basis for the vector space of all
polynomials in x. Similarly, the set of matrix units eij , having a 1 as the ij-th entry and
0 as the other entries, forms a basis for the space Mm,n of m × n matrices if the indices
i, j respectively run from 1 to m and from 1 to n.

With the notions of generation, linear independence, and basis in hand, we can now
return to linear systems. Rather than just looking at a single linear system MX = B, we
can fix an m×n matrix M and ask for which column vectors B this system is consistent. It
is not difficult to decide that a typical product MV can be rewritten as

∑n
i=1 viMi, where

vi is the ith coordinate in the column vector V and Mi is the ith column of the matrix M ,
regarded as a vector in Rn. Thus the set of vectors B such that MX = B is solvable, or
consistent, is exactly the span of the set of columns of M . We call this space the column
space, or column span, of M . How does linear independence fit into this picture? The
columns of M are a linearly independent set of vectors if and only if the homogeneous
linear system MX = ~0 has only the ~0 solution. From our previous work we know that this
happens if and only if the echelon from of M has a pivot in every column, so that there
are no free variables in the homogeneous system MX = ~0.

Now that we have related spans and independence to systems of linear equations we
can deduce a very important and interesting fact. For any m > n any set of m vectors in



Rn is linearly dependent. This holds because if we set up a matrix M whose columns are
the vectors in question and bring it to echelon form, there can be at most one pivot per
row, whence there cannot be a pivot in every column. Furthermore, for any m < n, no
set of m vectors in Rn can span Rn. Indeed, if we set up a matrix M whose columns are
the given vectors, its echelon form N must have a row of zeroes, whence there is B ∈ Rn

such that the system NX = B has no solution (if the ith row of N is ~0, just choose a B
with nonzero ith coordinate Bi. Running the operations required to produce N from M
backwards, we see that there is C ∈ Rn such that MX = C has no solution, so that the
column space of M is not all of Rn, as claimed. Putting the two settings of generation
and linear independence together, we also deduce that any independent set of n vectors in
Rn generates Rn. Given n independent vectors ~v1, . . . , ~vn in Rn we again form the matrix
M whose ith column is ~vi. Then this matrix has a pivot in every row and column when
brought to echelon form; in fact there is a pivot in the iith entry of the echelon form N
for all i between 1 and n. Thus any system NX = B is solvable, whence so is any system
MX = C.


