Lecture 4-8

We continue now to parse what we meant last time when we claimed that any subspace
of R™ looks “just like” R™ for some m < n. We have seen that, given a vector space V
generated by a finite subset {vy, ... , v} we get an obvious onto map from R™ to V sending
a tuple (ai,... ,am) to the combination ) a;v;. In order to say that V really looks like R™
in this case, however, we would like to know that this map is one-to-one as well as onto,
so that every v € V takes the form > a,;v; for a unique choice of a; € R. Accordingly, we
say that vectors vy,...,v,, in V are linearly independent, or just independent, if no two
distinct combinations > a;v;, Y bjv; (i.e. no two such combinations with a; # b; for some
i give the same vector. Equivalently, since > (a; — b;)v; = > a;v; — Y. bjv;, the vectors
V1,... , U are linearly independent if and only if the only combination ) a;v; which equals
0 € V is the zero combination (with a; = 0 for all 7). A set of vectors is dependent if it is
no independent. If S is an arbitrary subset of V' then S is called linearly independent if
and only if every finite subset of S is linearly independent.

The linear independence of a set of vectors is (by far) the most useful when it appears
in conjunction with generation. We call a finite set B of vectors in a vector space V a
basis of V if it both generates V and is linearly independent, so that every vector in V' is
a unique linear combination of elements in B. It should be clear from this definition that
if a vector space V admits a basis of m elements, then it really does look exactly like R™:
in fact there is an explicit bijection from R™ to V in this case. We will say more about
this bijection in a more general context later. For now we give some examples. It is clear
that the standard basis €; of R" really is a basis, where €; is the ith unit coordinate vector,
having 1 as its ith coordinate and 0 as the other coordinates. Outside of R™, the powers
1,x,...,2™ form a basis for the vector space of polynomials in one variable x of degree
at most n (together with the 0 polynomial, which by convention does not have a degree).
This vector space can also be described as the solution space to the differential equation
y( D) = 0. The set of all powers 1,z,22,... of = is a basis for the vector space of all
polynomials in z. Similarly, the set of matrix units e;;, having a 1 as the ij-th entry and
0 as the other entries, forms a basis for the space M,, , of m x n matrices if the indices
1, j respectively run from 1 to m and from 1 to n.

With the notions of generation, linear independence, and basis in hand, we can now
return to linear systems. Rather than just looking at a single linear system M X = B, we
can fix an m xn matrix M and ask for which column vectors B this system is consistent. It
is not difficult to decide that a typical product MV can be rewritten as Z?Zl v; M;, where
v; is the ith coordinate in the column vector V' and M; is the ¢th column of the matrix M,
regarded as a vector in R™. Thus the set of vectors B such that M X = B is solvable, or
consistent, is exactly the span of the set of columns of M. We call this space the column
space, or column span, of M. How does linear independence fit into this picture? The
columns of M are a linearly independent set of vectors if and only if the homogeneous
linear system M X = 0 has only the 0 solution. From our previous work we know that this
happens if and only if the echelon from of M has a pivot in every column, so that there
are no free variables in the homogeneous system M X = 0.

Now that we have related spans and independence to systems of linear equations we
can deduce a very important and interesting fact. For any m > n any set of m vectors in



R"™ is linearly dependent. This holds because if we set up a matrix M whose columns are
the vectors in question and bring it to echelon form, there can be at most one pivot per
row, whence there cannot be a pivot in every column. Furthermore, for any m < n, no
set of m vectors in R"™ can span R". Indeed, if we set up a matrix M whose columns are
the given vectors, its echelon form N must have a row of zeroes, whence there is B € R™
such that the system NX = B has no solution (if the ith row of NV is 0, just choose a B
with nonzero ith coordinate B;. Running the operations required to produce N from M
backwards, we see that there is C' € R™ such that M X = C has no solution, so that the
column space of M is not all of R”, as claimed. Putting the two settings of generation
and linear independence together, we also deduce that any independent set of n vectors in
R™ generates R™. Given n independent vectors o7, ... , 7, in R we again form the matrix
M whose ith column is ¢;. Then this matrix has a pivot in every row and column when
brought to echelon form; in fact there is a pivot in the iith entry of the echelon form N
for all 7 between 1 and n. Thus any system N X = B is solvable, whence so is any system

MX =C.



