
Lecture 4-7

Continuing from last time, suppose we are given a linear system MX = B, where M
is an m × n matrix (of real numbers, or elements of some field), X is a column vector of
unknowns, and B is a column vector of constants. We assume that the system makes sense,
so that X has length n while B has length m (we have m linear equations in n unknowns).
We learned last time how to bring the augmented matrix of this system (obtained from M
by adding the column B as a new column on the right) to echelon form by row operations,
so that the pivot(=leftmost nonzero entry) of every nonzero row has all zeroes below it in
its column, the pivots move strictly to the right as you go down the rows, and if any row
fails to have a pivot (i.e. is zero) then all lower rows are also zero. Note that pivots by
definition must lie in the coefficient matrix M , not the rightmost column of its augmented
matrix.

We also saw that our original system has a solution if and only if all nonzero rows of
the echelon form of the augmented matrix have pivots; that is, no equation of the system
in the echelon form reads 0x1 + . . . + 0xn = k for k 6= 0. The pivots all lie in different
columns, by definition of echelon form, so correspond to different variables, called the pivot
or bound variables. The remaining variables, if any, are called free and can take any value
(if the system is consistent). The values of the pivot variables are completely determined
by the values of the free variables, so that the system has a unique solution if and only
if it is consistent and there are no free variables. Otherwise it always has infinitely many
solutions, with any solution uniquely specified by the values of its free variables.

As an example, the system MX = B where M =

 1 2 3
4 5 6
7 8 9

 , B =

 6
15
24

 is

consistent and has x3 as its unique free variable. Solving the second equation −3x2 −
6x3 = −9 of the system in echelon form for x2 in terms of x3, we get x2 = (−1/3)(−9 +
6x3) = 3 − 2x3; solving the first equation x1 + 2x3 + x3 = 6 for x1 in terms of x3 we
get x1 = 6 − 3x3 − 2x2 = 6 − 3x3 − 2(3 − 2x3) = x3. We express the solution set as{x1

x2

x3

 =

 x3

3− 2x3

x3

}; in this way we indicate that x3 is the free variable via the last

vacuous equation x3 = x3, while the other variables are explicitly given in terms of x3.
In particular, if the original system MX = B has fewer equations than unknowns

(that is, m < n), and if it is consistent, the echelon form must have at least one (and in
fact at least n − m) free variables, since there cannot be more pivots than columns. If
the system MX = ~0 is homogeneous (in an obvious sense), then it always has the zero
solution, and so must have infinitely many solutions (more precisely parametrized by at
least n −m arbitrary real numbers). If however the original system has more equations
than unknowns then it is quite likely (but not certain) that it has no solution.

We now take a little break from systems, returning to the abstract setting with which
the Treil notes begin. We have already seen that a real vector space is an abelian group V
such that for every r ∈ R, v ∈ V there is rv ∈ V such that r(v1 +v2) = rv1 +rv2, (r+s)v =
rv + sv, r(sv) = (rs)v, 1v = v, for all r, s ∈ R, v1, v2 ∈ V . More generally, if these axioms
are satisfied with R replaced by some other field K (e.g. K = C), then we call V a vector



space over K. Besides the obvious example of Rn itself we have its subspaces S, which are
just subgroups of Rn as an abelian group such that rs ∈ S whenever s ∈ S, r ∈ R. Note
that the planes and lines in R3 studied in Chapter 13 of Salas-Hille qualify as subspaces
of R3 if and only if they contain the origin ~0; similarly, we sometimes allow ourselves to
call certain subsets S of Rn subspaces even if they are not actually vector subspaces. The
main example that we have seen so far is tangent hyperplanes to level sets in Rn; more
generally, if V is a vector subspace of Rn and ~w ∈ Rn then the set V + ~w = {~w+~v : ~v ∈ V }
is also called a subspace of Rn. As an example of a real vector space that is not a subspace
of Rn we cite the solution set to a linear homogeneous differential equation; this is why we
usually refer to the solution space rather than the solution set of such an equation. The
solution space to a linear nonhomogeneous differential equation would not then be a vector
space, but would be obtained from the solution space to the corresponding homogeneous
equation by adding a fixed function to all of its elements, as above. As another example
of a vector space different from Rn we cite the set Mm,n of m× n real matrices: any two
such matrices are (by definition) added by adding corresponding entries (this is not like
matrix multiplication!) while multiplying a matrix by a scalar by definition amounts to
multiplying each of its entries by that scalar. The vector space Mm,n is really just Rmn in
disguise; instead of listing the elements of an mn-tuple in a row, we arrange them in the
form of an m× n matrix.

Now it turns out that every subspace of Rn looks just like Rm for some m ≤ n. To
make this last statement more precise we need the notion of linear combination of vectors.
Given a set S = {v1, . . . , vm} of vectors vi in a vector space V , the set of all sums

∑m
i=1 aivi

for ai ∈ R is easily seen to be a subspace W of V ; in fact it is the unique smallest subspace
containing the vi. We call an element of W a linear combination of the vi and we say that
W is the subspace generated (or spanned by the vi. More generally, we could let S be
any subset of V ; then the subspace of V generated by S consists by definition of all finite
linear combinations of elements of S. It is also called the span of S. We never try to define
infinite linear combinations of vectors in a vector space.


