
Lecture 4-6

We now begin the linear algebra portion of the course, starting with the very concrete
setting of systems of linear equations. Given such a system of m equations in n unknowns
x1, . . . , xn, we choose notation so that the ith equation reads

∑
mijxj = bi (for 1 ≤ i ≤ m),

where the coefficients mij and constants bi on the right side are known (and assumed to
be real, though we could in fact allow numbers from any field here). We now know that if
we define an m × n matrix M by decreeing that its ij-th entry be mij , and if we further
write X,B for the respective column vectors (x1, . . . , xn), (b1, . . . , bn) of unknowns and
right-hand sides of the equations, then we may rewrite the entire system as a single matrix
equation MX = B. Let M ′ be the so-called augmented matrix obtained from M by adding
B as a new column on the right.

We solve this system be repeatedly replacing the equations by simpler ones with the
same solutions. More precisely, given two equations a1x1 + . . . + anxn = a, b1x1 + . . . +
bnxn = b with a1 6= 0, we can replace the second equation by itself minus b1

a1
times the

first equation to get a second pair of equations with (clearly) exactly the same (possibly
empty) solution set as the first pair, in which the coefficient of the first variable x1 in
the second equation is 0. Regarding the coefficients (a1, . . . , an, a), (b1, . . . , bn, b) of the
variables xi, followed by the constants a, b on the right sides, as vectors R1, R2, respectively,
we see that we are subtracting b1

a1
times R1 from R2. We call this a row operation and

sometimes denote it as R2 → R2 − (b1/a1)R1. Iterating this idea and starting now from
the augmented matrix M ′, assume that its top left entry m11 is nonzero. Label the rows of
M ′ as R1, . . . , Rm from top to bottom. Then by subtracting suitable multiples of R1 from
R2, . . . , Rm we arrive at the augmented matrix of another system with the same solution
set as the original system. Now if some row of this new system takes the form (0, . . . , 0, x)
for some x 6= 0, then that row corresponds to an equation 0x1 + . . . + 0xn = x, which
already has no solution; so certainly the original system has no solution.

We are now completely done with both the first row and first column of our system;
no entry in either of these will ever change henceforth. We proceed to look at the second
column in the new system. If the second entry of this column is nonzero, then by sub-
tracting suitable multiples of the second row from the third and lower rows, we arrive at
a new system equivalent to the original one in which all entries below the second one in
the second column and all entries below the first one in the first column are 0. Once we
have finished with the second column (and thereby also the second row), we proceed to the
third column, and so on, until we either reach the last equation of the system or run out
of columns (we will not get to all of its columns if it has more unknowns than equations).
Along the way, if we come to column i and its ith entry is 0 but some lower entry, say the
jth, in the same column is nonzero, then we interchange rows i and j (denoted Ri ↔ Rj)
in the system before proceeding further; clearly this new row operation again leads to an
equivalent system. Otherwise, if the ith and lower entries in the ith column are all 0, we
are done with the ith column and so proceed to the next column.

In the end we arrive at an equivalent system whose augmented matrix has all zeroes
below the leftmost nonzero entry (called the pivot) in every row and the position of this
leftmost nonzero entry moves strictly to the right as we go down the equations in the
system. Also if any row of the system consists entirely of zeroes, then all lower rows



also consist of zeroes. Such a system is said to be in echelon(=staircase) form. We then
solve it in reverse order, beginning with the last equation and proceeding to the first

one. For example, if the original system had M =

 1 2 3
4 5 6
7 8 10

 and B =

 6
15
25

, then

after clearing out the first column our augmented matrix is

 1 2 3 6
0 −3 −6 −9
0 −6 −11 −17

, while

after clearing out the second column the matrix becomes

 1 2 3 6
0 −3 −6 −9
0 0 1 1

. Now the

last equation of this last system clearly implies x3 = 1, whence we get x2 = 1 from the
second equation, whence finally x1 = 1 from the first equation. The unique solution to
the system is ( 1 1 1 ). Had the last equation in the original system been replaced by
7x1+8x2+9x3 = 25, then all steps in solving the system would have been the same, except
that the last equation of the last system would have read 0x1+0x2+0x3 = 1, which clearly
has no solution; so the original system has no solution as well. Had the last equation in
the original system been replaced by 7x1 + 8x2 + 9x3 = 24, then the last equation of the
last system would have read 0x1 + 0x2 + 0x3 = 0. Now of course the situation is very
different. We can in fact assign any value we like to x3, then use the second equation to
solve for x2 and finally use the first one to solve for x1; thus we get a family of solutions
instead of just one solution. We say that x3 is a free variable in this case; it corresponds
to the (in this case only) row of the original system that has no pivot in the echelon form.
The other variables x1, x2 are called bound (since they are determined by the values of the
free variables). We will observe next time that a system of linear equations is inconsistent
(i.e. has no solution) if and only if some row of its echelon form has just a single nonzero
as its rightmost entry.


