
Lecture 4-30

We learned last time that given any real symmetric matrix A we have UTAU =
U−1AU = D for some orthogonal matrix U and diagonal matrix D; the (real) diagonal
entries of D are the eigenvalues of A. (Note that conversely any matrix of the form
U−1DU is symmetric if U is orthogonal and D is diagonal.) Previously we had shown by
a completely different argument that we have PTAP = D′ for some invertible matrix P
and diagonal matrix D′, where P is not necessarily orthogonal. We also know that A is
positive definite if and only if the diagonal entries of D are positive, or if and only if the
diagonal entries of D′ are positive. We now want to recall that we obtained the matrix D′

by performing row and column operations on A in such a way that throughout multiples
of higher rows in A were added to lower ones and multiples of columns to the left were
added to columns to the right. These operations preserve not only the determinant of A
but also the determinant of the submatrix A(i) consisting of the entries of the first i rows
and columns of A, for all i between 1 and n (since every such submatrix is either unaffected
by any such operation, or else has the same operation performed on it; this is where it
is important that multiples of lower-numbered rows and columns are added to higher-
numbered ones rather than the reverse). Moreover, if A is positive definite, then none of
the pivots occurring in the ii-entries of any matrix B arising during the row reduction can
be zero, since A is positive definite if and only if B is, and if the ii-th entry bii of B is 0,
then ~eiB~e

T
i = 0, where as usual ~ei is the i-th unit coordinate vector in Rn, written as a

row vector. We conclude that a symmetric matrix A is positive definite if and only if all
submatrices A(i) as defined above have positive determinant; we had previously observed
this same necessary and sufficient condition for positive definiteness of 2 × 2 matrices.
Similarly, a symmetric matrix A is negative definite if and only if detA(i) is positive for i
even and negative for i odd, since this is the criterion for a diagonal matrix to be negative
definite. Finally, if all determinants detA(i) are nonzero, then any other pattern of signs
of the determinants A(i) implies that A is indefinite. (Note however that even if some
detA(i) is 0, this does not necessarily imply that some eigenvalue of A is 0, as the example

A =

(
0 1
1 0

)
shows.)

More generally, if A is Hermitian, then we have ŪTAU = U−1AU = D for some
(usually complex) matrix U (called unitary, since ŪT = U−1) and real diagonal D. This
last result is called the spectral theorem for Hermitian matrices; actually, there are a num-
ber of spectral theorems, all of them asserting that matrices satisfying a certain condition
on their conjugate transposes are always diagonalizable. In the special case of real sym-
metric matrices (where the matrix U is orthogonal), the spectral theorem is sometimes
called the principal axis theorem. Note that complex symmetric matrices, in contrast to
real ones or complex Hermitian ones, are nothing special; in particular, they need not be
diagonalizable.

There is a small modification of the dot product which turns out to be much more
useful than the dot product itself for complex vector spaces, which we should introduce
explicitly; it is called the Hermitian inner product and is denoted (~v, ~w) rather than ~v · ~w
for ~v, ~w ∈ Cn. If ~v = (v1, . . . , vn), ~w = (w1, . . . , wn), then (~v, ~w) is defined to be

∑
i viw̄i;

note that this quantity depends linearly on ~v but conjugate-linearly on ~w, so that (~v, α~w) =



ᾱ(~v, ~w) for α ∈ C. Also we have (~w,~v) = (~v, ~w) rather than (~v, ~w); this product is conjugate
symmetric rather than symmetric. If is more useful than the dot product since it is positive
definite: we have (~v,~v) ∈ R and (~v,~v) > 0 if ~v 6= ~0; by contrast, ~v · ~v need not be real for
~v ∈ Cn and even if it is real is need not be positive for ~v 6= ~0.

An n× n real matrix U is orthogonal if and only if its columns form an orthonormal
basis of Rn (one consisting of pairwise orthogonal unit vectors), or if and only if its Prows
form an orthonormal basis of Rn, or if and only if Uv · Uw = v · w for all v, w ∈ Rn.
Indeed, the columns of U are on orthonormal basis if and only if UTU = I, or if and only
if UUT = I, or if and only if the rows of U are an orthonormal basis, or if and only if
Uv · Uw = vtUTUw = vTw = v · w for all v, w ∈ Rn, writing v and w as column vectors.
The corresponding condition on unitary matrices V is that the columns of V , or its rows,
form an orthonormal basis of Cn with respect to the Hermitian inner product.

More generally, for any real n × n matrix A and any v, w ∈ Rn, we have Av · w =
wTAv = vTATw = v · ATw (writing v, w as column vectors). This last equation gives
the precise relationship between the linear transformations of multiplication by A and
multiplication by AT ; note that we need the dot product to formulate this relationship. It
is expressed in words by saying that AT is the adjoint of A. A similar remark holds for
ĀT and the Hermitian inner product; indeed, another name for the conjugate transpose of
A is its adjoint.


