
Lecture 4-3

We close out Chapter 16 by looking at the last section, where we show how to re-
construct a differentiable real-valued function of two variables from its gradient. We have
already seen that a differentiable function from R2 to R2, regarded as an ordered pair
(P (x, y), Q(x, y)) of differentiable real-valued functions on R2 (and often called a vector
field on R2), may or may not be the gradient ∇f of a real-valued function f (sometimes
called a scalar field). If such an f exists for (P,Q), it is called a scalar potential for this
pair. Recall that we have seen scalar potentials before (though we did not call them by
this name): given a differential equation P dx+Qdy = 0, if the pair (P,Q) admits a scalar
potential f , so that the equation is exact, then the general solution to the equation is
f(x, y) = c for some constant c.

We have also seen that if (P,Q) has a scalar potential f , then we must have Py = Qx,
assuming that both of these functions are continuous, for then both of these functions
equal fxy = fyx. Hence in particular the vector field (x2, x) has no scalar potential,
and indeed if we try to solve the equations fx = x2, fy = x, then we find that we must
have f = (x3/3) + g(y) for some function real-valued function g; but no function of the
form (x3/3) + g(y) can have y-partial equal to x. What about the converse? Does every
differentiable pair (P,Q) with Py = Qx admit a scalar potential f? This turns out to be a
rather subtle question. The answer is yes for functions P,Q with continuous partials defined
on a rectangle R = [a, b]× [c, d]. Here we can construct the potential f directly. Choose a
point (x0, y0) in the interior of R and set f(x, y) =

∫ x

x0
P (u, y0) du+

∫ y

y+0
Q(x, v) dv. Then

fy = ∂
∂y (

∫ y

y0
Q(x, v) dv) = Q(x, y), by the Fundamental Theorem of Calculus, since the

first integral does not depend on y and the second integral has y as its upper limit. Next
fx = ∂

∂x (
∫ x

x0
P (u, y0) du) + ∂

∂x (
∫ y

y0
Q(x, v) dv = P (x, y0) + ∂

∂x (
∫ y

y0
Q(x, v) dv). Now since

the operations of differentiation with respect to x and y commute whenever all partials
are continuous, it is plausible that the same is true of differentiation with respect to x
and integration with respect to y. Taking this for granted and using the hypothesis that
Py = Qx, we replace the second term above by

∫ y

y0

∂P
∂y (x, v) dv = P (x, y)−P (x, y0) and the

sum equals P (x, y), as desired (see pp. 859-60 of the text). Thus we have a necessary and
sufficient condition for continuously differentiable vector fields to be gradients whenever
the vector fields are defined on rectangles.

Problems however can arise for vector fields that are undefined at one or more points.
The classical example is the field (P,Q) = ( −y

x2+y2 ,
x

x2+y2 ). Here one can readily check that

Py = Qx. On integrating P with respect to x one obtains f(x, y) = arctan(y/x), whose
y-partial is indeed equal to Q. Are we good here? Unfortunately we are not: the field
(P,Q) is undefined only at the origin (0, 0), but our function f(x, y) is undefined on the
entire y-axis. Thus we do not really have ∇f(x, y) = (P (x, y), Q(x, y)) at all points where
(P (x, y), Q(x, y)) is defined. The function f(x, y) may ring a bell here: it is the formula
usually given for the polar angle coordinate θ in terms of the Cartesian coordinates x and
y. This is not quite accurate, however, since the arctangent function is usually taken to
have range (−π/2, π/2), while the angular coordinate θ takes values all the way from 0 to
2π. What is going on here is while we could define θ unambiguously for all (x, y) 6= (0, 0)
by specifying that 0 ≤ θ(x, y) < 2π, it would not then be continuous on the positive x-



axis; no matter how we fuss and fiddle with the definition of θ on the xy-plane, we cannot
get rid of its fundamental discontinuity on an entire curve of points including the origin
(though we have considerable freedom in moving this curve around). There is no problem
with discontinuity at (0, 0), since P and Q are not defined there, but discontinuity at other
points is incompatible with having a gradient equal to (P,Q) at such points. The upshot
is that (P,Q) is not a gradient after all. Some of you may go on to see (or have already
seen) line integrals of vector fields over parametrized curves in the plane (this is covered
in Math 324, the sequel to the first-year 12x sequence). It is a fundamental fact that the
line integral of any gradient (field) over a closed curve is 0; but the linear integral of (P,Q)
over the unit circle traced once counterclockwise turns out to be 2π; in general, over any
closed curve not passing though the origin, the line integral of this field turns out to be an
integer multiple of 2π.

Strangely enough it turns out that dimension three behaves better than dimension
two in this respect. Any suitably differentiable vector field (P (x, y, z), Q(x, y, z), R(x, y, z))
with Py = Qx, Pz = Rx, Qz = Ry defined on a rectangular box [a, b]×[c, d]×[e, f ] turns out
to be a gradient: we have ∇f = (P,Q,R) for a suitable f , and the same holds if (P,Q,R)
fails to be defined at one point of a rectangular box. Only if (P,Q,R) is undefined on an
entire curve of points can a difficulty analogous to that of the last paragraph arise.


