
Lecture 4-29

On Monday we learned that the eigenvalues of any n × n matrix A are exactly the
roots of its characteristic polynomial p, which has degree n. Now a fundamental property
of polynomials of degree n with real or complex coefficients is that they have n complex
roots, counted with multiplicity. Thus in particular any real (or complex) n × n matrix
A has at least one eigenvalue λ, which however might be complex even if A is real; of
course if λ is complex we must expect that the coefficients of a corresponding eigenvector
will be complex as well. Such a vector can be found by solving the homogeneous system
(A− λI)v = 0 as usual, working with complex numbers throughout.

It turns out however that a large class of matrices including the symmetric ones all turn
out to have real eigenvalues and are diagonalizable to boot. Call an n×n complex matrix
A Hermitian if ĀT = A; here ĀT is computed by taking AT as usual and then replacing
every entry by its complex conjugate. Thus any real symmetric matrix is Hermitian;
more generally a Hermitian matrix A always has real entries along its main diagonal,
while a typical off-diagonal entry aij satisfies aij = āji. Now for any v ∈ Cn, say with
coordinates (v1 + iw1, . . . , vn + iwn) with vi, wi ∈ R, the dot product v · v̄ of v and
its conjugate v̄ is the sum

∑n
i=1(v2i + w2

i ), which is 0 if v = 0 and is a positive real

number otherwise. Moreover we have AB
T

= B̄T ĀT for any complex matrices A,B, just
as (AB)T = BTAT . Hence if v ∈ Cn is an eigenvector of a Hermitian matrix A with

eigenvalue λ, then v̄TAv = v̄T ĀT v = λ̄v · v̄ = λv · v̄, forcing λ ∈ R, since v · v̄ 6= 0. Hence
the eigenvalues of a Hermitian matrix are real. But even more than this is true. If v is
an eigenvector of the Hermitian matrix A with eigenvalue λ and if w ∈ Cn is such that

v̄ · w = v · w̄ = 0, then v̄TAw
T

= w̄TAv = λw̄ · v = 0, forcing v̄T · Aw = 0, whence
multiplication by A sends the subspace S of Cn consisting of all vectors orthogonal to v̄
to itself. Now this subspace S cannot contain v, since v̄ · v > 0. As the solution space
to the single homogeneous equation v̄ · x = 0, this subspace has dimension n− 1, whence
a basis of it combined with v gives a basis of Cn. Hence A must have an eigenvector in
S (multiplication by A is a (complex) linear transformation from S to itself and so must
have an eigenvector). The eigenvalue of this eigenvector, being an eigenvalue of A, must
also be real.

More generally, given any subspace W of Cn, say of dimension m, the subspace U of
all x ∈ Cn with w̄ · x = 0 for all w ∈ W (called the orthogonal complement of W ) has
dimension n −m, being the solution set to a system of m homogeneous equations (since
w̄ · x = 0 for all w ∈W if and only if b̄i · x for all bi running over a basis of W . Moreover,
no w ∈ W with w 6= 0 lies in U , for otherwise w̄ · w = 0, a contradiction. It follows that
the union of bases for U and for W is a basis of Cn. Thus, given an n × n Hermitian
matrix A, we can start with an eigenvector v1 of A, say with eigenvalue λ1 ∈ R, pass to
the orthogonal complement C of the subspace spanned by v1, locate a second eigenvector
v2 of A with v1, v2 independent, then pass to the orthogonal complement C ′ of the span
of v1 and v2 in Cn, and so on; in the end we see that there is a basis of Cn consisting of
A-eigenvectors, each with real eigenvalue. Moreover, the construction of this basis shows
that if v and w are two vectors in it, then v̄ · w = v · w̄ = 0.

In particular, if A is real and symmetric, then the above analysis applies and shows



that A has real eigenvalues; moreover, since the entries of A are real, its eigenvectors may
be taken to have real coordinates as well. In this case all of the conjugations occurring in
the above paragraph disappear and we conclude that given any real symmetric matrix A,
the ambient vector space Rn admits an orthogonal basis of A-eigenvectors (that is, a basis
of A-eigenvectors such that any two basis elements are orthogonal). If we form a matrix
U whose columns are n orthogonal eigenvectors for A, then U−1AU is diagonal with real
entries. But now we can go a step further: by dividing each of the columns in U by its
length, we can arrange for every column in U to be a unit vector, as well as for any two
columns of U to be orthogonal. The consequence of this extra property is that UUT = I,
since a typical entry of UUT is the dot product of two columns of U , and so is 1 if the two
columns are the same and 0 otherwise. Hence UT = U−1, so that UTAU = U−1AU = D, a
diagonal matrix. Matrices U with this last property are called orthogonal; they correspond
(relative to the standard basis) to orthogonal linear transformations, which (by definition)
preserve lengths of vectors and angles between vectors in Rn. We will have more to say
about such transformations later.


