
Lecture 4-28

Continuing from last time, we now present a simple example of a non-diagonalizable

matrix, namely A =

(
1 1
0 1

)
. Computing p(λ) = det(A − λI), we get (1 − λ)2, so A

has 1 as its unique eigenvalue. (This is no accident; we will see below that any matrix
whose characteristic polynomial factors into distinct linear factors is diagonalizable.) The
multiplicity of 1 as a root of p(λ) is 2, but in solving the system (A − I)X = 0 we find
that there is only one free variable. The 1-eigenspace of A, or equivalently the nullspace

of A − I, is spanned by the single vector

(
1
0

)
. Since this is the only eigenvector of A

up to scalar multiple, there is no basis of R2 consisting of eigenvectors of A and A is not
diagonalizable, as claimed.

Now if λ1, . . . , λm are distinct eigenvalues of a matrix B, with corresponding eigen-
vectors v1, . . . , vm, then the vi are independent. To prove this, suppose contrarily that we
had a dependence relation

∑
aivi = 0 among the vi in this situation, with m as small as

possible; then it follows that ai 6= 0 for all i (lest there be a dependence relation with fewer
than m terms). Taking the product A

∑
aivi =

∑
aiλivi = 0 and subtracting from this

λ1
∑
aivi, we get a dependence relation in which v1 does not appear but v2, . . . , vm do,

each with nonzero coefficient, since λ1 6= λi for i 6= 1. This dependence relation has fewer
than m terms, a contradiction, so the vi must be independent, as claimed. In particular,
if the characteristic polynomial of an n× n matrix A has n distinct roots λ1, . . . , λn, each
with corresponding eigenvector v1, . . . , vn, then the vi are independent and so must form a
basis of Rn. Thus A is diagonalizable, as claimed. More generally, a square matrix A fails
to be diagonalizable if and only if the dimension of its λ-eigenspace (called its geometric
multiplicty is less than the multiplicity of λ as a root of its characteristic polynomial (called
its algebraic multiplicity, as with the matrix A in the first paragraph).

Given two similar square matrices A and P−1AP , we have det(P−1AP − λI) =
det(P−1(A − λI)P ) = (detP )−1 det(A − λI) detP = det(A − λI), by the product rule
for determinants. Thus similar matrices have the same characteristic polynomial (and
thus also the same eigenvalues, as we observed earlier). We also see from this that the
characteristic polynomial of a linear transformation f : V → V is well defined for any
finite-dimensional vector space V , being the characteristic polynomial of the matrix of f
with respect to any basis of V . We can now derive two important links between numbers
attached to a matrix A and its characteristic polynomial p(λ). First of all, plugging in
λ = 0, we get detA as the constant term of p(λ); but now recall that the constant term
of any polynomial of degree n whose leading coefficient (like that of p(λ)) is (−1)n, is the
product of the roots. Hence the determinant of any square matrix is the product of its
eigenvalues, counting each with its multiplicity as a root of the characteristic polynomial.
Similarly, but a bit more subtly, one shows that the trace of a square matrix is the sum
of its eigenvalues, counting each with multiplicity in the same way. To do this, note from
the definition of p(λ) = det(A− λI) that the coefficient of λn in this polynomial is (−1)n,
since the only contribution to this power of λ arises from taking the −λ from each term
of the product P of the di − λ, where the di are the diagonal entries of the matrix, while
the coefficient of λn−1 in this polynomial is (−1)n−1 times the sum of the di, since the



only contribution to this power of λ arises from taking di from the term di − λ in P for a
unique i and −λ from all other terms. Then one concludes by recalling that the next to
leading coefficient of any polynomial divided by its leading coefficient equals the negative
of the sum of its roots. In particular, if two 2 × 2 matrices have the same trace and
determinant, then they have the same characteristic polynomial (though they need not be
similar: observe that the matrix A in the first paragraph and the 2× 2 identity matrix I
both have characteristic polynomial (1− λ)2).

In general, it is quite difficult to compute eigenvalues of large square matrices; this is
fundamentally more complicated than solving large linear systems. There are two special
cases, however, for which eigenvalues are easy to read off, namely those of an upper or lower
triangular matrix (with either all entries below the main diagonal, or all entries above this
diagonal, equal to 0; we call a matrix triangular if it is either upper or lower triangular).
We have already observed that the determinant of a triangular matrix is the product of
its diagonal entries; it follows at once that the eigenvalues of a triangular matrix are its
diagonal entries (though the eigenvectors are not necessarily the unit coordinate vectors,
as they would be for a diagonal matrix; note also that triangular matrices need not be
diagonalizable).


