
Lecture 4-26

We begin by going over the midterm. The first problem is a straightforward application
of Lagrange multipliers; equating the gradient of volume to a multiple of the gradient of
surface area and taking the variables r, h in that order, we get (2πrh, πr2) = λ(2πh +
4πr, 2πr), from which we get 2h/r = 2 + (h/r), (h/r) = 2, at the unique critical point.
This must correspond to maximum volume for fixed surface area, since the volume can
be arbitrarily small for a given area. Hence the height should be twice the radius of the
base. In the next problem, we observe that the given vectors are nonzero multiples of
(1, 1, 0), (1, 0, 1), and (0, 1, 1). By taking the sum of these last vectors, we see that (1, 1, 1)
lies in their span; subtracting each of these last vectors in turn from (1, 1, 1), we see that
the vectors span R3. Since the dimension of R3 is 3, the given vectors indeed form a basis.
In the third problem, we find that we must have yz = xz = xy = −1 at a critical point;
but then taking the product of these equations yields x2y2z2 = −1, which is impossible.
Hence there are no critical points and thus no local maxima or minima for this function.
In the fourth problem, applying row and column operations to clear out the first row and

column, we get

 3 0 0
0 8/3 2/3
0 2/3 8/3

; doing the same with the second row and column we

get

 3 0 0
0 8/3 0
0 0 5/2

. Since all diagonal entries are positive, the given matrix is positive

definite. Finally, for the last problem, on bringing the given matrix to echelon form, we

get

 1 2 3
0 −1 −2
0 0 a− 1

, whence we get three pivots if and only if the system always has a

solution, or if and only if a 6= 1.
We now officially define an eigenvector of a square matrix A to be a nonzero vector

~v such that the product A~v = λ~v for some λ ∈ R when ~v is written as a column vector;
we call λ the corresponding eigenvalue and sometimes describe it more precisely as a λ-
eigenvector. Similarly, we say that λ is an eigenvector of a linear transformation f : V → V
if f(v) = λv for some v ∈ V, v 6= 0. The set of eigenvalues of a matrix or a transformation
is called its spectrum (and behaves analogously to a chemical spectrum in certain ways).
If λ is an eigenvalue of A, then the set of all λ-eigenvectors of A together with ~0 is easily
seen to be a vector space, called the λ-eigenspace of A; we use the same terminology for
linear transformations. It is clear how to compute this space for a given A if λ is also
given, as it will be the nullspace of the difference A − λI. The hard part is finding a
λ for which this space is nonzero, since we already know that most square matrices are
invertible (so that their nullspaces are 0). More precisely, we now know that A − λI
has a nonzero nullspace if iand only if it is singular, or if and only if det(A − λI) = 0.
Thanks to the definition of the determinant, this last condition amounts to a polynomial
condition on λ. More precisely, if A is n × n, then there is a polynomial p(x) of degree
n and leading coefficient (−1)n such that A − λI is singular if and only if p(λ) = 0 (the
coefficient (−1)n of the top-degree term λn in this polynomial arises from the product of
the diagonal entries of A − λI, which is one of the terms in det(A − λI). We call this



polynomial the characteristic polynomial of A. Now a polynomial of degree n over R or C
always has exactly n roots, but there are two important caveats here: these roots can be
complex even if the polynomial has real coefficients, and the roots have to be counted with
multiplicity (so that the number of distinct roots might be strictly less than n). Hence an
n× n matrix always has at most n distinct eigenvalues, which can be complex even if the

matrix has real entries. As a simple example, take A =

(
1 2
−1 4

)
. Here the characteristic

polynomial p(λ) = (1 − λ)(4 − λ) − (−2) = λ2 − 5λ + 6 = (λ − 3)(λ − 2). Thus the
eigenvalues of A are 3 and 2; to find corresponding eigenvectors, we find the nullspaces of

A− 3I and A− 2I. These spaces are spanned by

(
1
1

)
and

(
2
1

)
, respectively; note that

these vectors form a basis of the ambient vector space R2. (This is no coincidence, as we
will see later that eigenvectors of a matrix corresponding to distinct eigenvalues are always
linearly independent, so that in particular if an n×n matrix A has n distinct eigenvalues,
then the corresponding eigenvectors always form a basis for the ambient vector space.)

Now the time has come to give a more detailed account of the how the matrix of a
linear transformation f : V → V changes if the basis B of V used to produce this matrix
is replaced by a different one B′. Fortunately, this is quite straightforward. Write the
vectors in B′ as linear combinations of the vectors in B and assemble a matrix P whose
columns are the coefficients arising in this way (with the i-th column corresponding to
the i-th vector in B′). Then it is quite easy to see that the matrix P is always invertible
and in fact the columns of the inverse P−1 are the coefficients appearing when the vectors
in B are written as combinations of the vectors in B′; moreover, by tracing through the
definitions of P and P−1 we see that if A is the matrix of f with respect to B, then
P−1AP is the matrix of f with respect to B′. As mentioned before, we therefore say
that two square matrices M,N of the same size are similar if there is an invertible P with
N = P−1MP . One easily checks that M is similar to N if and only if N is similar to
M , and if M is similar to N and N is similar to Q, then M is similar to Q (so that
similarity is what is called an equivalence relation among matrices). Now if A admits a
basis B of eigenvectors (corresponding to possibly different eigenvalues) then the matrix
P whose columns are the vectors in B is easily seen to satisfy P−1AP = D, a diagonal
matrix; in fact the i-th diagonal entry of D is just the eigenvalue λi of the i-th vector in B.
We say that A is diagonalizable in this situation. Many computations with diagonalizable
matrices can be reduced to the corresponding computations with diagonal matrices, which
are typically quite straightforward to carry out. For example, the k-th power of a diagonal
matrix D with diagonal entries d1, . . . , dn is clearly another diagonal matrix with diagonal
entries dk1 , . . . , d

k
n, for any integer k. But now when we compute (P−1DP )2 for some

invertible matrix P , for example, we get (P−1DP )(P−1DP ) = P−1D2P ; more generally,
we have (P−1DP )k = P−1DkP for any integer k. Thus even large powers of diagonalizable
matrices are quite simple to compute. In real-world applications, it frequently happens
that a system evolves over time discretely, so that we can speak of its state on the k-th day
(or some other time period) and this might depend only on its state on the (k− 1)-st day.
If the state on each day is encoded by a vector and the state on each day equal some fixed
matrix times the vector encoding its state on the previous day, then by computing large



powers of the matrix times the initial vector, we can predict the behavior of the system
arbitrarily far in advance.


