
Lecture 4-23

We continue with reviewing material covered so far, proceeding now to linear algebra.
We began with systems of linear equations; we have seen how, given such a system MX =
B we can perform row operations on the augmented matrix M ′ obtained from M by adding
B as a new column to its right so as to bring M to echelon form, so that the leftmost
nonzero entry of every nonzero row of M has zeroes below it, the position of this leftmost
entry moves strictly to the right as you go down the rows, and all zero rows of M are
grouped together at the bottom. The resulting system is then consistent (has a solution)
if and only if no zero row in the echelon form of M has a nonzero rightmost entry. If this
is the case, then we can write down the entire solution set by identifying the free variables
of the system (corresponding to columns of M not having pivots in its echelon form),
assigning arbitrary values to these variables, and then solving for the other variables in
terms of the free ones.

Turning now to the abstract linear algebra behind the algorithm for solving systems,
we say that a collection v1, . . . , vm of vectors in a vector space V is (linearly) independent
if the only combination

∑
aivi equal to the 0 vector has ai = 0 for all i. The span of

the same set of vectors in V consists by definition of all such combinations
∑

aivi and is
a subspace of V . A system MX = B has a solution if and only if B lies in the column
span of M (the subspace spanned by the columns); in turn the columns of M are linearly
independent if and only if the only solution to the homogeneous system MX = 0 is the 0
solution. Thus, in particular, any set of more than n vectors in a vector space of dimension
n (e.g. Rn) is necessarily dependent, since the matrix M formed by the coordinates of its
columns (with respect to some basis) cannot have a pivot in every column in its echelon
form, so that the system MX = 0 must have at least one free variable. By the same token,
no set of fewer than n vectors can span Rn, or any vector space of dimension n. Any
basis of Rn has exactly n vectors, and more generally any two bases of the same vector
space have the same number of elements, called the dimension of that space. Given a
vector space of dimension n, any set of n vectors spans the space if and only if it is linearly
independent, so that the two requirements in the definition of basis (it must span the space
and be independent) are equivalent for any set of n vectors in a space of dimension n.

There are three important subspaces of Rp (for various p) attached to any (possibly
rectangular) m×n matrix M , namely its row space, spanned by its rows and living in Rn;
its column space, spanned by its columns and living in Rm; and its kernel or nullspace,
consisting of all column vectors V ∈ Rn with MV = 0. The row and columns spaces always
have the same dimension, called the rank of M ; the dimension of the kernel of M equals
the number of its columns minus its rank. (A fourth subspace, called the left nullspace
and consisting of all row vectors V ∈ Rm with VM = 0, is less important; its dimension
equals the number of rows of M minus its rank.)

Given two finite-dimensional vector spaces V,W with fixed respective bases B,B′, any
linear transformation f from V to W (such that f(v1+v2) = f(v21)+f(v2), f(rv) = rf(v)
for all v, v1, v2 ∈ V, r ∈ R) has a unique matrix A, whose ith column consists of the
coefficients of f(bi), the image of the i-th vector of B, when written as a combination
of the vectors in B′; we can then compute f(v) for any v ∈ V by writing v as a linear
combination of vectors in B, assembling the coefficients of the vectors of B into a column



vector, multiplying A by thie column vector, and interpreting the resulting column vector
as a combination of vectors in B′, taking the coordinates of this vector as the coefficients
in the combination. If V = Rn,W = Rm, then we can say more snappliy that any linear
transformation f from V to W is given by left multiplication of column vectors of length
n to a unique m× n matrix, producing thereby a column vector of length m. The column
space of the matrix then coincides with the range of f , while its nullspace is the same as
the kernel of f , defined to be the space of all v ∈ Rn with f(v) = ~0.

Given any real symmetric matrix M (equalling its own transpose), we can perform row
operations on it as usual to bring it to echelon form, but follow each by the corresponding
column operation, so as to preserve the symmetric nature of M throughout. In the end
we produce a diagonal matrix D. The original matrix M is positive definite in the sense
that ~V TMV > 0 for all nonzero column vectors V of the appropriate length if and only
if all diagonal entries of D are positive; similarly M is negative definite if and only if all
diagonal entries of D are negative.

Finally, given any matrices A,B for which the products AB,BA are both defined (and
thus both square), we have tr AB = tr BA, where the trace tr C of any square matrix C
is defined to be the sum of the entries along its main diagonal. More generally, if a matrix
product AB is defined, so is the reverse product BTAT of the transposes BT and AT of
B and A and we have (AB)T = BTAT .


