
Lecture 4-22

Last time we saw that the determinant detA of a square matrix A is nonzero if and
only if A is invertible. We can actually give an explicit formula for the inverse A−1 of A
whenever detA 6= 0. To do this, let B be the transpose of the cofactor matrix of A, so that
its ji-th entry bji is the ij-cofactor Cij = (−1)i+j detAij of A. Computing the product
AB, we see that its ii-th entry for any i is given by a sum matching the expansion of detA
about its i-th row, whence this entry is detA. On the other hand, if i 6= j, then the ij-th
entry of AB is again given by the expansion of detA about the j-th row of A, but with
the the k-th entry ajk of that row replaced by aik. Thus it is the expansion about the
j-th row of the determinant of the matrix A′ obtained from A by replacing its j-th row
with another copy of its i-th row, whence this entry is 0. Hence AB = (detA)I, whence
A−1 = (1/ detA)B. In words, the inverse matrix is the transpose of the cofactor matrix
divided by the determinant. This formula is not generally useful for computations, except

for 2×2 matrices; in that case it says that the inverse of A =

(
a b
c d

)
is (1/h)

(
d −b
−c a

)
,

where h = detA = ad − bc. Thus the diagonal entries a, d switch places in the inverse,
while the off-diagonal entries b, c switch signs. Returning to the general n × n case, we
get something called Cramer’s Rule as a consequence of the formula for A−1. Given a
linear system AX = B such that A is invertible, so that the unique solution is A−1B, we
can write down an explicit formula for the value of the i-th variable xi in the solution,
namely detA′i/ detA, where A′i is the matrix obtained form A by replacing its i-th column
with the vector B on the right side. In particular, the value of xiis given by a ratio of
determinants. The formula follows at once by a direct computation of A−1B, using the
above formula for A−1.

We also have the extremely useful product rule for determinants: we have detAB =
(detA)(detB) if A,B are n × n matrices. The sneaky way to prove this formula is to
note first that if B is singular, so that the rows of B fails to span Rn, then the same
is true of the rows of AB, these being combinations of the rows of B. Thus detAB =
detB = (detA)(detB) = 0 in this case. Otherwise, if B is nonsingular (and fixed),
then the function mapping the rows of A to the ratio (detAB)/(detB) is easily shown
to be alternating and multilinear in these rows and moreover (det IB)/(detB) = 1. This
forces (detAB)/(detB) = detA, as claimed, by the uniqueness of the determinant as
an alternating multilinear functions of the rows equalling 1 on the rows of the identity
matrix. In particular, for an invertible matrix A, we have detA−1 = (detA)−1, since
det I = 1 = (detA)(detA−1).

Finally let me mention the standard geometric interpretation of the determinant:
given n independent vectors ~v1, . . . , ~vn in Rn, let A be the matrix whose i-th column is
~vi. Let P be the parallelepiped spanned by the ~vi consisting by definition of all linear
combinations

∑n
i=1 ri~vi where ri ∈ [0, 1]. Then the n-dimensional volume of P is the

absolute value |detA| of the determinant of A. We will not attempt to prove this formula,
as we have not even defined n-dimensional volumes yet, but we mention the formula now
because it will appear in the change of variable formula for multiple integrals, which we
will see toward the end of the quarter.

In the remaining time today we start to review the course so far. We began with



a piece of calculus which led directly to linear algebra. Given a real-valued function f
defined on an an open subset of Rn a necessary condition for f to have a local maximum
or minimum at ~a is that ∇f(~a) = ~0 or ∇f(~a) is undefined; in practice we ignore the latter
possibility. If this holds we need a way to decide whether ~a is a local maximum, a local
minimum, or neither for f . We do this by setting up the Hessian matrix H = H(~a) whose
ij-th entry is ∂2f/∂xi∂xj(~a), a symmetric matrix, and then working out whether H is

positive definite (in the sense that ~vTH~v > 0 for all column vectors ~v 6= ~0, or negative
definite, or neither. In the 2× 2 case, setting A = fxx(~a), B = fxy(~a), and C = fyy(~a), H
is positive definite and ~a is a local minimum exactly when A > 0, AC − B2 > 0, while H
is negative definite exactly when A < 0, AC −B2 > 0. If AC −B2 < 0, then ~a is a saddle
point for f .

The last bit of calculus that we did before starting linear algebra had to do with
maximizing or minimizing real-valued functions restricted to level sets of other functions.
The criterion for ~a to be a critical point for a function f restricted to a level set for the
function g is that ∇f(~a) = λ∇g(~a) (or ∇g(~a) = ~0, but we will ignore this possibility).
There is no second-derivative test for the nature of a critical point in this setting; we are
forced to look at the values of f at all critical points and compare these values to decide
where the global maximum and minimum of f occur.


