
Lecture 4-21

Continuing from where we left off last time, we would like to see now that the sign of
a permutation of n indices is well defined; that is, if a permutation is a product of oddly
many interchanges of adjacent indices, then it cannot also be the product of evenly many
such interchanges. To do this we attach a nonnegative integer `(π) to a permutation π in
such a way that this number changes by one if π is multiplied on the left by an interchange
of adjacent indices. This number `(π), called the length of π (or the disorder of π in
the Treil notes) is the number of pairs (i, j) of indices such that i < j but π(i) > π(j);
equivalently, if the numbers π(1), . . . , π(n) are written in this order along a line, it is the
number of times a larger number precedes a smaller one. Now it is easy to check that,
given the arrangement π(1), . . . , π(n), if two adjacent numbers in it are interchanged, then
the length increases or decreases by one; it increases by one if the leftmost of the numbers
interchanged is less than its right-hand neighbor and decreases by one otherwise. Since the
length of the identity permutation is 0 (and in fact the identity is the only permutation of
length 0), it follows that the product of an odd number of adjacent interchanges (or any
interchanges) cannot also be the product of an even number of adjacent interchanges (or
any interchanges), as claimed.

Thus there is indeed one and only one multilinear alternating function f of the rows
A1, . . . , An of an n × n matrix A such that f(~e1, . . . , ~en) = 1. Writing as before aij for
the ij-th entry of A, we have f(A1, . . . , An) = detA =

∑
π s(π)a1π(1) . . . anπ(n), where

s(π) = sgn(π) is the sign of the permutation π. This sum has only n! terms rather than
the nn terms of the first sum we wrote down last time, but that is still a lot of terms.
Fortunately, there is a much easier inductive formula for the determinant of an n × n
matrix, expressing this determinant in terms of determinants of various (n− 1) × (n− 1)
matrices. To write down this formula we need some more notation. For any indices i, j
between 1 and n, write Aij for the ij-minor of A, obtained from A by deleting its i-th row
and j-th column. Write Cij for the ij-cofactor of A, equal to (−1)i+j times the determinant
detAij . Then for each fixed i we have detA =

∑n
j=1 aijC

ij ; likewise for each fixed j we

have detA =
∑n
i=1 aijC

ij . We call the first of these formulas the expansion of detA about
the i-th row of A; the second one is similarly the expansion of detA about the j-th column
of A. These formulas hold because, given a permutation π of the n indices, it takes π(1)−1
interchanges of adjacent indices in the list π(1), . . . , π(n) to get 1 to the first position in
this list; once this has been done, it takes π′(2) − 2 more interchanges of adjacent indices
to get 2 to the second position in the list, where π′(2) the position of 2 in the new list,
and so on. The upshot is that the coefficient of pπ = a(1π(1) . . . anπ(n) in either the row

or column expansion of detA works out to be (−1)π(1)−1+π
′(2)−2+..., and if π is multiplied

on the right by n(π) = π(1)− 1 +π′(2)− 2 + . . . adjacent interchanges, we get the identity
permutation, so that finally the coefficient of pπ in either a row or column expansion of

detA is sgn(π), as required. In particular, the determinant of the 2×2 matrix

(
a11 a12
a21 a22

)
is a11a22 − a12a21, as we knew from before; similarly the determinant of the 3 × 3 matrix a11 a12 a13
a21 a22 a23
a31 a32 a33

 is a11(a222a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31),



again as we knew before. Also since detA can be computed by either a row or column
expansion we see that any square matrix A has the same determinant as its transpose AT .

We furthermore see that if a multiple of one row is added to another in A, then by
multilinearity and the alternating property the determinant of the new matrix is the sum
of two other determinants, one that of A and the other that of a matrix with two equal
rows, so the new matrix has the same determinant as A; this row operation does not change
the determinant. If two rows of A are interchanged, on the other hand, then detA does
change, but only by a sign, so that in particular the determinant of the new matrix is 0 if
and only if detA = 0. Similarly, if a row of A is multiplied by a nonzero scalar, then detA
is multiplied by the same scalar, so that again the determinant of the new matrix is 0 if
and only if detA = 0. Finally, once A is brought to reduced echelon form, its determinant
is the product of its diagonal entries, this product being the only possibly nonzero term
contributing to the above formula for detA in terms of permutations. But we know that
A is invertible if and only if its reduced echelon form has the maximum possible number
n of pivots, or equivalently the reduced echelon form is the identity matrix, so finally we
see that we have achieved our main goal: detA = 0 if and only if A is singular. As a
side benefit, we learn along the way the most efficient method in practice for computing
the determinant of A, namely to apply row operations as usual to bring it to echelon form
(bearing in mind that interchanging two rows of A changes its determinant by a sign)
and then take the product of the pivots in the echelon form, or take the determinant of
A to be 0 if some row in the echelon form fails to have a pivot. We don’t actually have
to bring A all the way to reduced echelon form, since the determinant of any triangular
matrix (having all zeroes either above the main diagonal, or all zeroes below this diagonal)
is the product of the diagonal entries. Indeed, if all entries above the main diagonal of A
are 0 (so that A is lower triangular) then expanding detA about the first row of A gives
(−1)1+1 = 1 times a11 times the determinant detA11 of the 11-minor A11, and A11 is
again lower triangular whence by induction detA is the product of its diagonal entries, as
claimed. The argument is similar for upper triangular matrices, expanding all determinants
about the first columns.


