
Lecture 4-20

We now develop the general theory of determinants of n×n matrices; our goal here is
to attach a single number detA to such a matrix A that will determine (hence its name)
whether or not A is invertible. It is best to think of this number as a function f(A1, . . . , An)
of the rows A1, . . . An (rather than the entries) of A, so that f(A1, . . . , An) = 0 if and only
if the vectors Ai are dependent.

We know that the Ai are dependent if and only if they fail to span Rn and that the
span of the Ai is unaffected if a row operation is performed on A. We also know that the
Ai are dependent if two of them are equal. So we seek a a function f(A1, . . . , An) that
is unchanged if Ai is replaced by Ai + kAj for some k ∈ R and that is 0 if two of the Ai
are equal. The best way to accomplish the first of these properties, given the second, is to
make f multilinear, that is, linear in each Ai separately if the other Ai are fixed (just as the
product function p(x1 . . . , xn) = x1 · · ·xn is linear in each xi if the other ones are fixed).
The second property (that f should vanish whenever two of the Ai are equal) is called
the alternating property; thus we are looking for an alternating multilinear real-valued
function of the Ai.

Remarkably enough there is just one such function up to scalar multiple, so that the
determinant function f is uniquely specified by the requirements that it be multilinear and
alternating in the rows together with the prescribed value f(~e1, . . . , ~en) = det I = 1. To
prove this, let A = (aij) be any n×n matrix, so that its ith row Ai =

∑
j aij~ej . Then any

multilinear function f of the Ai has f(A1, . . . , An) =
∑
σ a1σ(1) . . . anσ(n)f(~eσ(1),... ,~eσ(n)

,
where the sum runs over all functions σ from the index set {1, . . . , n} to itself. This is a
huge sum with nn terms, but fortunately most of them vanish if f is in addition alternating,
for then f(~eσ(1), . . . , ~eσ(n)) = 0 if σ(i) = σ(j) for any indices i 6= j. What survives in the
formula for f(A1, . . . , An) is

∑
π a1π(1) . . . anπ(n)f(~eπ(1), . . . , ~eπ(n), where π runs through

all permutations of {1 . . . , n}, that is, all 1-1 and onto functions from this index set to
itself, or rearrangements of this set. Note that there are exactly n! such permutations π,
since one such is specified by its value at the index 1 (for which there are n choices), then
its value at 2 (n− 1 choices), and so on.

Given an multilinear alternating function f(A1, . . . , An), suppose that Ai = Aj = ~v+
~w for ~v, ~w ∈ Rn. Then f(A1, . . . , ~v+ ~w, . . . , ~v+ ~w, . . . , An) = 0 = f(A1 . . . , ~v, . . . , ~v, . . . )+
f(A1, . . . , ~w, . . . , ~v, . . . ) + f(A1, . . . , ~v, . . . , ~w . . . ) + f(A1, . . . , ~w, . . . , ~w, . . . ) =
f(A1 . . . , ~v, . . . , ~w, . . . ) + f(A1, . . . , ~w, . . . , ~v, . . . ). We deduce that any multilinear alter-
nating function changes sign if any two of its arguments are interchanged. Now it is well
known and quite intuitive that any permutation of n indices is the product of interchanges
of just two indices: given a line of n books on the shelf that you want to rearrange in some
manner, you can just interchange whatever book you want to be leftmost with the current
leftmost book, then whatever book you want to be to its right with the book currently
to its right, and so on. Hence any nonzero multilinear alternating function f(A1, . . . , An)
taking the value 1 at (~e1, . . . , ~en) takes a uniquely determined value ±1 at any permutation
(~eπ(1), . . . , eπ(n)) of ~e1, . . . , ~en). But now the problem is that it is conceivable that some
permutation π might simultaneously be a product of evenly many interchanges and oddly
many interchanges; if so, then any multilinear alternating function f would have to take
the value 0 at (~eπ(1), . . . , ~eπ(n)), and in fact the only such function would be the 0 function.



Clearly this is a fate too horrible to contemplate; fortunately, we will see next time that
there is no such permutation π. That is, every permutation π is either the product of
evenly many interchanges, or oddly many interchanges, but not both. We call a product
π of evenly many interchanges even as a permutation and say that its sign sgn(π) = 1;
otherwise we call π odd as a permutation and write sgn(π) = −1. We will show that signs
are well defined next time. For now we just note that any interchange of two indices is the
product of oddly, many interchanges of adjacent indices, since it takes j− i interchanges of
adjacent indices to bring index j > i to the ith position and then j−i−1 such interchanges
to bring index i to the jth position. Hence any multilinear function f(A1, . . . , An) which
changes sign if two adjacent Ai are interchanged is in fact alternating. This is a useful
technical observation for our analysis next time. Note also that it is quite easy to see
that the identity permutation of two indices is even while the non-identity permutation
of two indices is odd, since here is just one non-identity permutation of two indices, and
interchange, and the square of this interchange is the identity.


