
Lecture 4-2

Continuing with the problem we ended with last time, let A = (aij) be an n × n
symmetric matrix, so that aij = aji for all indices i, j lying between 1 and n. Last time
we considered the problem of maximizing or minimizing f(~x) = ~xtA~x for all unit column
vectors x ∈ Rn. Since the set of unit vectors in Rn is both closed and bounded, we know
on general grounds that f(~x) must have both a maximum and a minimum on this set; we
saw last time that the maximum and minimum must occur at vectors ~x 6= ~0 with A~x = λ~x
for some λ ∈ R; we call any such λ an eigenvalue of A and the corresponding ~x 6= ~0 a
λ-eigenvector, or just an eigenvector, of A. We have thus shown that A is positive definite
in the sense that ~xtA~x > 0 for all unit vectors ~x, and thus for all nonzero vectors ~x, if
and only if all eigenvalues of A are positive; similarly we see that A is negative definite
in an obvious sense if and only if all of its eigenvalues are negative. We also see that any
symmetric n×n matrix A has a unique largest eigenvalue and a unique smallest eigenvalue
(corresponding unit eigenvectors being respective a maximum and a minimum for f(~x) on
the (hyper)sphere of radius 1 in Rn, consisting of all unit vectors in that space). Hence if
A is positive definite, there are positive constants c, d with c(~x ·~x) ≤ ~xtA~x ≤ d(~x ·~x) for all
~x ∈ Rn (regarding ~x as a column vector). The same result holds with negative constants
c, d if instead A is negative definite.

Armed with this new information we return to the situation we discussed on Tuesday
of a function f : Rn → R with continuous second partials at a critical point ~a. Thanks
to the definition of twice differentiability and the second-order Taylor approximation to f
near ~a, we now see that if the Hessian matrix H of f at ~a is positive definite, then f has a
local minimum at ~a, while if H is negative definite at ~a, then f has a local maximum at ~a.
Also if H is indefinite in the sense that it has both positive and negative eigenvalues, then
f has a saddle point at ~a, since the second-order Taylor approximation shows that f(~x) is
less than f(~a) for certain ~x arbitrarily close to ~a (and differing from it by an eigenvector of
H with negative eigenvalue), while f(~x) is greater than f(~a) for other ~x arbitrarily close to
~a (and differing from it by an eigenvector of H with positive eigenvalue). If on the other
hand one of the eigenvalues of H is 0, then all bets are off, as we cannot say how f(~x)
behaves if ~x differs from ~a by an eigenvector of H with 0 eigenvalue.

We look at two more (closely related) problems involving Lagrange multipliers. Con-
sider first the problem of maximizing or minimizing g(x1, . . . , xn) = a1x
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ject to x21 + . . .+ x2n = 1, where the ai are pairwise distinct constants. Here the Lagrange
equation is (2a1x1, . . . , 2anxn) = λ(2x1, . . . , 2xn), which at first seems contradictory, but
then we recall that it is possible for some of the xi to be 0. Returning to the equation with
this possibility in mind, we find that the unique maximum of a1 occurs at (±1, 0 . . . , 0)
and the unique minimum of an occurs at (0, . . . , 0,±1), assuming that a1 is the largest of
the ai and an is the smallest. Now consider the seemingly easier problem of maximizing
h(~x) = a1x1 + . . . , anxn under the constraints that k(~x) =

∑
xi = 1, xi ≥ 0 for all i (we

add this last constraint so as to guarantee that the set of points under consideration is still
closed and bounded). Under the same hypothesis on the ai, we get the same maximum
and minimum values as before, namely a1 and an, respectively, this time at (1, 0, . . . , 0)
and (0, . . . , 0, 1); but this time the Lagrange equation (a1, . . . , an) = λ(1, . . . , 1) is defi-
nitely not satisfied for any choice of λ. What’s going on here? It turns out that this last



problem differs in a subtle way from any of the others previously considered: because of
the additional constraint that xi ≥ 0 for all i, the points (1, 0, . . . , 0) and (0, . . . , 0, 1) are
not smooth points of the level set, even though the gradient of the function k(~x) is not ~0
at these points. These points are “sharp corners” of the level set and it clearly does not
have a well-defined tangent hyperplane at either of them, whence the argument that the
Lagrange equation must be satisfied breaks down at these points. The supposedly simpler
functions involved in the second problem actually led to a harder situation to analyze. Had
we omitted the constraints xi ≥ 0, then the Lagrange equation would have correctly told
us that h(~x) has no maximum or minimum on any level set of k.

Sometimes we have to combine the techniques of §§16.6 and 16.7 in the same problem.
Thus if we are asked to maximize f(x, y) = xy on the unit disk x2 + y2 ≤ 1 we first look
at the interior of the disk, consisting of all points (x, y) with x2 + y2 < 1. This is an open
set, so the critical points of f on it are the ones with ∇f = ~0. We have already seen that
there is just one such point, namely (0, 0), and that it is a saddle point. Next we look at
the boundary of the disk, which is exactly the unit circle in the xy-plane. Using either
Lagrange multipliers or the more elementary method given earlier of parametrizing this
boundary, we find that the overall maximum of f(x, y) is 1/2, attained at (
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and the overall minimum of f(x, y) is −1/2, attained at (
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