
Lecture 4-17

We give some examples to illustrate the general theory developed last time. Starting

with our favorite matrix A =

 1 2 3
4 5 6
7 8 9

, we have already seen that A reduces to the

echelon form E =

 1 2 3
0 −3 −6
0 0 0

. Consequently its rank is 2, since there are two pivots in

the echelon form. A basis for its row space is given by the nonzero rows (1, 2, 3), (0,= 3,−6)
of its echelon form. Its column space also has dimension 2; a basis is given by the first two
columns of A (since those are the ones with pivots in E), or actually in this case by any
two columns of A. The nullity of A is 1, since the system AX = ~0 winds up having one
free variable. A basis for this space is given by the single vector obtained by setting the

free variable x3 equal to 1 and then solving for the other variables; this vector is

 1
−2
1

.

The left nullspace also has dimension 1; it has as basis the same vector (1,−2, 1) (this is
a coincidence, though since the matrix A is square we know in advance that the nullspace
and left nullspace have the same dimension).

For an example with a nonsquare matrix we look at another old friend, namely the

matrix B =

 1 2
3 4
5 6

. This time the echelon form E is

 1 2
0 −2
0 0

. The columns and row

spaces both have dimension 2, the column space having as basis the columns of B while
the row space has basis (1, 2), (0,−2) (or any two of the rows of B). This matrix has full
rank. its nullspace is ~0 while its left nullspace has as basis the same vector (1,−2, 1) as in
the last example.

The notion of rank extends in a natural way to linear transformations; given one such,
say f : V → W , we say that the rank of f is the dimension of f(V ), the range of f on
V (which we have already observed is a subspace of W ). This coincides with the rank of
the matrix of f with respect to any choice of bases B,B′ of V and W ; thus the rank of
this matrix does not change, though the matrix does, if B and B′ are replaced by different
bases. Since the range of f is spanned f(vi) as the vi run over a basis of V , we see that
the rank of any transformation from V to W is at most the minimum of the dimensions
of V and W , just as the rank of a matrix is at most the minimum of the numbers of its
rows and columns. Now we can more fully explain a remark made earlier. Given an m×n
matrix A and an n×m matrix B with m < n, the products AB and BA are both defined
and square, the first of these being m×m and the second n× n. The second product BA
is then always singular, since its rank is the dimension of BARn, which is at most m < n,
since ARn ⊂ Rm; on the other hand, it is perfectly possible for the other product AB to

be nonsingular, or even the identity. A simple example is A = ( 1 2 ) , B =

(
1
0

)
. Thus

the matrix equation AB = I does not imply BA = I if A and B are nonsquare matrices.
Moreover, given linear transformations f, g from an infinite-dimensional vector space V to



itself, it is possible for fg to be the identity while gf is not: take the vector space P of
polynomials in one variable x, take g to be definite integration from 0 to x, and take f to
be differentiation. (As a nice exercise, write down the infinite matrices of f and g with
respect to the natural basis 1, x, x2, . . . of P !)

Similarly we define the nullity of a linear transformation f : V → W to be the
dimension of its kernel; this coincides with the nullity of the matrix of f with respect to
any choice of bases of V and W .

Given the m× n matrix A of a linear transformation f : Rn → Rm (say with respect
to the standard bases, its n × m transpose AT is the matrix of another transformation
g : Rm → Rn. It is natural to wonder how the transformation g could be described
directly in terms of f . We will show how to do this later, when we get dot products into
the linear algebra picture.

Finally, to complete our running discussion (for this week; we will say more about this
later) of symmetric matrices brought to diagonal form by row and column operations, we
recall that in order to do this, we had to assume at various points along the way that entries
in the ii position are nonzero, so that they could serve as pivots. But in fact any symmetric
matrix can be brought to diagonal form without having to make this assumption. To see
this, suppose that when we first come to the ith column we find that the iith entry is 0 but
some lower entry in this column, say the jth, is nonzero. Then we just add the jth row to
the ith row, simultaneously adding the jth column to the ith column. Now the iith entry
is nonzero and we can proceed with the ith column as before. Moreover, if all the lower
entries in the ith column are 0, then we are done with the ith column and can proceed to
the next column. The upshot is that given any symmetric matrix M there is a product
P of elementary matrices such that PMPT = D is diagonal; then M is positive definite
if and only if D has positive entries along its diagonal, and similarly negative definite if
and only if D has negative entries along its diagonal. Thus our algorithm for determining
whether a symmetric matrix is positive definite is now entirely general.


