
Lecture 4-16

We saw last time that an n× n matrix has independent columns if and only if it has
independent rows if and only if it has independent columns, so that its row space is all of
Rn if and only if its column space is Rn. We now want to massively generalize this result
and in the process attach an important number to a matrix, not necessarily square. We
have previously defined the column space of a matrix as the span of its columns; we now
similarly define its row space to be the span of its rows. We now claim that the row and
column spaces of any matrix A, not necessarily square, always have the same dimension;
we call this dimension the rank of the matrix. To see this, we bring A to echelon form by
row operations, as usual. Any row operation on a matrix preserves its row space, so the row
space of the echelon form is the same as that of A. But now the row space of the echelon
form is clearly spanned by its pivot, or nonzero rows; these are moreover independent since
the coefficient of the topmost pivot row in any dependence relation must be 0 in order to
make the coordinate in the pivot position 0, this being the only row having a nonzero in
that position; then the coefficient of the next topmost pivot row must also be 0 in any
dependence relation, and so on. Hence the dimension of the row space of A equals the
number of pivots in its echelon form.

But now the dimension of the column space also equals the number of pivots in
the echelon form. This is a bit tricker to prove, since row operations do not generally
preserve the column space; but we have seen that the dimension of the column space is the
dimension of the space of vectors B such that the system AX = B has a solution. Since
row operations are reversible this space has the same dimension as the space of vectors C
such that EX = C has a solution, where E is the echelon form of A. From our algorithm
for solving linear systems we learn that EX = C has a solution if and only the coordinate
of C corresponding to any non-pivot(=zero) row of E is 0; so the dimension of the space
of such vectors C equals the number of pivots in E, as claimed. Since the column space of
A is also the range of the linear transformation with matrix A, we also call it the range of
A itself and sometimes denote it Ran A. It has as a basis those columns of A that have
pivots in its echelon from E. A matrix A is said to have full rank if its rank is as large as
possible; that is, its rank equals the minimum of the numbers of its rows and columns.

Thus even though the row and column spaces of A generally live in different vector
spaces, they always have the same dimension. Later we will strengthen this result: mul-
tiplication by A, when restricted to its row space, gives an isomorphism onto its column
space. After we prove this last fact we will use it to work out the best possible solution in
an appropriate sense to an inconsistent system AX = B.

Besides the row and column spaces of A another important space attached to A is its
kernel, or nullspace, consisting of all vectors X with AX = ~0. The homogeneous system
AX = ~0 is always consistent; the number of its free variables equals the number of columns
of A minus the number of pivots in its echelon form, or the number of columns of A minus
its rank. We get a basis for this space by setting each free variable in turn to 1 and the
others to 0 and then solving uniquely for the remaining variables. Hence the dimension
of Ker A, also called the nullity of A, equals the number of columns of A minus its rank.
Note carefully that it is the number of columns of A and not rows of A that appears in
this formula; it holds for arbitrary rectangular matrices A, but not in general if “columns”



is replaced by “rows”.
Yet another subspace attached to A is its left nullspace, which is the kernel of AT , or

equivalently the space of row vectors X with XA = ~0. The dimension of this space equals
the number of rows of A minus its rank. This space is not as important as the nullspace
of A and accordingly is not given a special name in the Treil notes.

If we have to solve several linear systems with the same coefficient matrix A, say
AX = B1, . . . , AX = Bm (not necessarily with the same solutions X), we can do it most
efficiently by fattening up the usual augmented matrix: add columns B1, . . . , Vm to the
right of the matrix A to make a larger matrix. Then we can bring A to echelon form,
taking the extra columns Bi along for the ride, and so simultaneously solve the systems.
In particular, if A is n × n and invertible, then in order to find its inverse A−1, we must
solve the systems AX = ~e1, . . . , AX = ~en to produce the columns of A−1. Hence we
can compute A−1 by adding a copy of I, the identity matrix, to the right of A, and then
row-reducing A to I; the same row reductions applied to I, then give A−1.

Finally, continuing with the procedure given earlier for bringing a symmetric matrix
M to diagonal form by row and column operations, we observe that the row operations are
implemented by multiplying M on the left by a suitable product En · · ·E1 of elementary
matrices; at the same time we multiply M on the right by the reverse product ET

1 · · ·ET
n of

their transposes, so as to implement the column operations. Thus if D is the diagonal ma-
trix obtained by these row and column operations, then we have D = En · · ·E1MET

1 · · ·Et
n.

But now for every row vector ~v we have ~vD~vT = (~vE1 · · ·En)M(ET
n · · ·ET

1 ~v
T ) = ~wM ~wT ,

where ~w = ~vE1 · · ·En, since the transpose of a product is the reverse product of the trans-
poses. Hence it is indeed the case, as mentioned earlier, that D is positive definite (or
negative definite) if and only if M is, for symmetric matrices M .


