
Lecture 4-15

Continuing from last time, we now want to see how to bring a matrix in echelon form

to reduced echelon form. Start with our first old friend, the matrix M =

 1 2 3
4 5 6
7 8 10

.

We have already seen that an echelon form of this matrix is

 1 2 3
0 −3 −6
0 0 1

. Now we

make things a little easier for ourselves by first dividing the second row by −3, making the

matrix

 1 2 3
0 1 2
0 0 1

. Next we subtract twice the second row from the first one, obtaining 1 0 −1
0 1 2
0 0 1

. Next, we add the third row to the first one and at the same time subtract

twice the third row from the second one, obtaining finally

 1 0 0
0 1 0
0 0 1

, which is the

identity matrix I. Had we started with the matrix

 1 2 3
4 5 6
7 8 9

 in our second example,

we would have wound up with the matrix

 1 0 −1
0 1 2
0 0 0

; had we started with our first

rectangular matrix

(
1 2 3
4 5 6

)
, we would have wound up with

(
1 0 −1
0 1 2

)
. In all three

cases you can check that the matrix we got in the end really is in reduced echelon form.

Now the only possible reduced echelon form of a square matrix in which every row has
a pivot is the identity matrix I. If a square matrix M can be brought to reduced echelon
form using our three row operations (adding a multiple of one row to another, interchanging
two rows, or multiplying a row by a nonzero scalar), then there are elementary matrices
E1, . . . , Em such that E1 · · ·EmM = I, whence one easily checks that M = E−1m · · ·E−11 .
Here it is easy to see that any elementary matrix is invertible; the inverse matrix is the
matrix of the inverse operation (adding a times row j to row i if the original operation
subtracted a times row j from row i, interchanging rows i and j if the original operation
did the same, and finally multiplying row i by a 6= 0 if the original operation divided row
i by a). Hence given any square matrix M with linearly independent columns, all of its
rows have pivots when it is brought to echelon form, whence the only possible reduced
echelon form of it is I, and M is invertible (being the product of invertible elementary
matrices). Conversely, if M is square but does not have independent columns, then there
is a nontrivial solution to MX = ~0, whence the same is true if M is replaced by a matrix
in reduced echelon form obtained from it by row operations, whence no sequence of row
operations can transform M to I. Moreover M is not invertible in this case, since if it



were the only solution X to the system MX = ~0 would be X = M−1MX = M−1~0 = ~0.
We conclude that a square matrix M is invertible if and only if its columns are linearly
independent. Likewise, such a matrix M is invertible if and only if its rows are linearly
independent. Indeed, the rows of a matrix are linearly dependent if and only if the same is
true of the rows of any matrix obtained from by a row operation, since any such operation
can be inverted and replaces the rows of M by linear combinations of themselves. Hence
the only possible reduced echelon form of a square matrix with independent rows is I and
such a matrix is invertible, while conversely we have seen that an invertible matrix has
reduced row echelon form I and so must have independent rows. Also a square matrix is
invertible if and only if it is a product of elementary matrices.

We conclude with an easy but useful operation on matrices and an important number
attached to a square matrix. Given an m × n matrix A = (aij), its transpose AT is the
n ×m matrix whose ji-th entry is aij ; thus we write down AT by writing the rows of A
as the columns of a new matrix, Given a product AB of matrices that is defined, we know
that the ij-th entry of AB is the dot product of the ith row of A and jth column of B;
since these coincide with the ith column of AT and jth row of BT , respectively, we have
(AB)T = BTAT , so the transpose of a product is the reverse product of the transposes.
The trace tr A of an n × n matrix A is the sum

∑n
i=1 aii of its diagonal entries; trace is

undefined for nonsquare matrices. Given an n×m matrix A and an m×n matrix B, so that
both products AB,BA are defined and square (but generally of different sizes), we have
tr AB =

∑n
i=1

∑m
j=1 aijbji = tr BA. We will work out consequences of this formula later.

For now, let’s work out an example of the procedure outlines last time to bring a symmetric
matrix to diagonal form by row and column operations. Start with the symmetric matrix

M =

 1 0 1
0 1 1
1 1 1

. Subtract row 1 from row 3 and simultaneously column 1 from column

3, to produce the matrix M ′ =

 1 0 0
0 1 1
0 1 0

; note that (as promised last time) M ′ is still

symmetric. Now subtract row 2 from row 3 and simultaneously column 2 from column 3,

to produce the diagonal matrix D =

 1 0 0
0 1 0
0 0 −1

. Clearly D is not positive definite,

having a −1 on the main diagonal; so M is not positive definite either.


