Lecture 4-14

Today we present a couple of examples of linear transformations(=linear maps) and
their corresponding matrices. We begin with the very familiar setting of the plane R2.
An easy example of a linear transformation from R? to itself is rotation by @ radians
counterclockwise; this sends the first unit coordinate vector (1,0) to (cos#f,sin€) and (0,1)
to (—sinf, cosf). Accordingly, its matrix My is (0989 - sme) Note that the matrix

sinf  cosf
product MyMy = My g; rotation by 0 followed by rotation by 6’ amounts to rotation by
0+ 6. A somewhat more subtle example in R? is reflection by the line through the origin
corresponding to the angle 6/2; this sends (1,0) to (cos#,sin#) as before, but now sends
cosf  siné
sin —cosf ) '
It sends (cos6/2,sin6/2) to itself but sends (—sin6/2,cos/2) to its negative. Note that
a typical product RyRj is not equal to R, for any «; in terms of linear transformations,
the product of two reflections is not a reflection. Instead it is a rotation; as an exercise,
work out the angle by which it is rotation. Rotations can also be defined in R™ for n > 3;
for example, the rotation by 6 radians counterclockwise in the zy-plane makes sense in R3
cosf sinf 0

and has matrix | sinf cosf 0 |. Here however there are many more possibilities; you
0 0 1

can rotate in any plane containing 0, not just the zy-plane, and thereby fix any normal
vector of this plane. A remarkable fact which we may prove later is that the composite of
two rotations in R3, even in different planes, is another rotation in R? in yet a third plane;
this is not at all obvious.

We can also relate row operations to matrix multiplication. Specifically, call an n x n
matrix elementary if it is obtained from the identity matrix I by applying a single row
operation (either adding one multiple of a row to another or interchanging two rows). Then
you can check that if F is an elementary m x m matrix obtained from I by applying the
row operation 7, then the product EM is the matrix obtained from M by applying the
same row operation w to M, for any m x n matrix M. If you multiply on the right rather
than the left, then row operations get replaced by column operations: if F is obtained from
the n x n identity matrix I by a single column operation (adding one multiple of a column
to another or interchanging two columns) then the product M E of an m x n matrix M and
FE is obtained from M by applying the same column operation to M. Note that applying
a column operation to the coefficient matrix of a linear system M X = B, unlike applying
a row operation, does change its solution set, but only by changing its variables. More
precisely, if a times column j is added to column ¢ of the matrix M in the system M X = B
(with j > 4), then a solution (z1,...,%,...,2;...,%,) (written as a column vector) to
the new system gives rise to a solution (x1,...,2;,... ,2; + i, Zjy1,... ,Zy,) to the old
system; similarly, if columns ¢ and j are interchanged in M, then a solution to the new
system becomes a solution to the old system M X = B if its ¢th and jth coordinates are
interchanged. In particular, the system obtained from a system M X = B by applying a
column operation to M is consistent if and only if M X = B is consistent and it has a
nonzero solution if and only if M X = B does. We also see that any m xn matrix M can be

(0,1) to (sinf, — cos ). Accordingly, the matrix Ry of this reflection is (



brought to echelon form by multiplying it on the left by a suitable product of elementary
matrices. (Note also that the two senses of “elementary matrix” are equivalent here: a
square matrix is obtained from I by a single row operation if and only if it is obtained
from I by a single column operation.)

A matrix M in echelon form is said to be in reduced echelon form if any column of it
with a pivot has the pivot as its only nonzero entry (that is, zeroes occur above the pivot
position in any column with a pivot as well as below this position) and only 1s occur in
pivot positions. Given a matrix in echelon form we can bring it to reduced echelon form
by subtracting a suitable multiples of the second row (if it has a pivot) from the first one,
then a suitable multiple of the third row from the first one, and so on, until all pivots in
lower rows than the first have zeroes about them in the first row, then doing the same
for the second row, and so on, followed by dividing each nonzero row by the number in
its pivot position. We will see an example of this and work out the consequences of being
in reduced echelon form next time. For now, we mention a variation of the echelon form
which applies to square symmetric matrices. Given an n X n symmetric matrix M, suppose
that its 11th entry mi; is not 0. Do the usual row operations to replace all all entries in
the first column of M below m1; by 0, but now follow these up by doing the corresponding
column operations at the same time and in the same order. (For example, if you added 2
times row 1 to row 3, add 2 times column 1 to column 3). The effect of these additional
operations is to “symmetrize” the effect of the original row operations, so that the matrix
M’ thus obtained is again symmetric and has zeros in its first row to the right of its first
entry, just as it continues to zeros in its first column below this entry. Now do the same for
the second row, assuming that current 22-entry is nonzero; having applied row operations
to make all entries below the 22th entry 0, follow these up with the corresponding column
operations, so that the new matrix is again symmetric and its second row and column
consist entirely of zeros apart from the 22th entry.

Continue in this way with the subsequent columns, assuming that all ii entries are
nonzero as required. The upshot is that you get a diagonal matrix D (whose only nonzero
entries lie on the main diagonal, from upper left to lower right). Now we have seen that any
row operationis implemented by multiplying the matrix on the left by suitable elementary
matrices F;. Every time you multiply the matrix on the left by some FE;, you multiply it
on the right by the transpose E} of E; (obtained from the identity matrix by doing the
same operation on the columns that was done on the rows from I to produce E;), so as to
do the corresponding column operation on the matrix.

Recall that when we were discussing Hessian matrices H earlier of differentiable func-
tions at critical points, we saw that these matrices are always symmetric and the critical
point is a local minimum whenever the Hessian matrix H is positive definite in the sense
that whenever H is multiplied by a nonzero row vector  on the left and by that same
vector on the right, written as a column vector, the resulting number is positive. It turns
out that this property holds of H if and only if it holds of the diagonal matrix D produced
by the above procedure; in turn this holds if and only if all diagonal entries of D are
positive. We now have a practical algorithm for deciding whether a symmetric matrix is
positive definite. We will return to this topic later.



