
Lecture 4-13

Last time we saw that any linear map f : V → W between a pair V,W of finite-
dimensional vector spaces has a unique matrix M relative to any choice of bases B.B′

of V,W , respectively. In particular, if V = Rn,W = Rm, then by far the most common
choices for B and B′ are the standard bases, whose i-th vectors in both cases are the i-th
unit coordinate vector, having 1 as the i-th coordinate and 0 as the other coordinates.
Fixing these bases, we see that any linear transformation from Rn to Rm is given by
left multiplication of a column vector in Rn by an m × n matrix (producing thereby a
column vector in Rm). The correspondence between linear transformations and matrices
becomes even more useful when one observes that given two transformations f : Rn →
Rm, g : Rm → Rp, with respective matrices A,B, so that A is m× n and B is p×m, the
composite transformation gf : Rn → Rp, which is easily seen to be linear, has BA (a p×n
matrix) as its matrix; this follows at once from the definitions of matrix multiplication and
linear map. As an immediate (and highly non-obvious) consequence we see that matrix
multiplication is associative whenever defined, as mentioned earlier. That is, to be more
precise, a triple matrix product (AB)C is defined if and only if A(BC) is defined and then
the two products are equal. This follows since if A,B,C respectively represent the maps
f, g, h, then either of these triple products represents the composite (f(gh) = (fg)h. On
the other hand, even if we focus attention on linear maps from Rn to itself, two such maps
generally fail to commute if n > 1, so once again we see that multiplication even of n× n
matrices for fixed n > 1 is not commutative.

A weak kind of commutativity that does hold, however, is the following: given a
linear map f from Rn to itself that is 1-1 and onto, so that its inverse f−1 is well-defined
as another map from Rn to itself, this inverse is easily seen to be linear. The composite
ff−1 = f−1f of the two maps in either order is then the identity map, whose matrix is
the identity matrix I (having 1s on the main diagonal from upper left to lower right and
0s elsewhere). Hence for two n× n matrices A,B we have AB = I if and only if BA = I;
we write B = A−1 in this case and call A invertible or nonsingular. (Note however that
if A and B are n × m and m × n respectively for some n 6= m then it is quite possible
that AB = I but BA 6= I; in fact, we will see later that it is not possible BA to equal I
in this situation if m > n.) Moreover, if f takes Rn to Rn, it is not necessary to check
that f is both 1-1 and onto: we have seen that a square matrix A has pivots in all rows
when brought to echelon form if and only if it has pivots in all columns in that form and
the columns of A are dependent if and only if they span Rn, so that a linear map with
this matrix is 1-1 if and only if it is onto. We will see later that there is a single number
attached to a square matrix A called its determinant that is nonzero if and only if A is
nonsingular.

A word of caution here: the correspondence between linear maps between a pair of
fixed finite-dimensional vector spaces and matrices of a fixed size depends on the choice
of fixed bases for the vector spaces; it changes if those bases are changed. We will explore
exactly how the matrix changes if the bases are changed later. For now let me mention that,
by a standard convention, if we look at linear transformations f from a finite-dimensional
vector space V to itself, then we usually choose just one basis B of V and insist on using
this basis for both the domain and range of f in computing its matrix. If the square



matrices M,N represent the same transformation f : V → V with respect to different
bases, then we call M and N similar; we will see later that this is a very interesting
relationship between matrices arising in many contexts. We can see already that a lot
has to be similar (in the ordinary English sense) about similar matrices; for example, any
matrix similar to an invertible one has to be again invertible (representing as it does an
invertible transformation). Now recall that a square matrix M is said to have eigenvalue
λ and corresponding eigenvector V 6= 0 if MV = λV . What can be said about a matrix
N similar to M in this situation? You can’t quite say that NV = λV , since the n-tuple
representing V comes from the coefficients of the basis vectors in a particular combination
equalling V and those coefficients could change if the basis is replaced by a different
one. But you can say that NW = λW for some W 6= 0: similar matrices have the
same eigenvalues. We will say a lot more about eigenvalues and eigenvectors (and similar
matrices) later.


