Lecture 4-10

Last time we showed that any generating set of a finite-dimensional vector space V'

can be shrunk to a basis of V. Similarly, if we start with an independent subset vq,... , v,
of V we can enlarge it to a basis of V, simply by adding a basis wq,...,w, of V to
the original list vq,... , v, and running through the resulting list vq,... , vy, w1, ... , Wy,

eliminating vectors that are linear combinations of preceding vectors, until we obtain a
basis of V'; we never eliminate any v; during this procedure, since no v; is a combination of
preceding ones. We also see that every subspace W of V is also finite-dimensional and in
fact of dimension at most that of V' and the dimension of W equals that of V' if and only
if W = V. This follows since no independent subset of W can have more than dim V' (the
dimension of V') vectors, whence there is a maximal subset M of independent vectors in
W (one not properly contained in any other). This subset must then also be a basis of W,
since if any w € W is not in its span, we could add w to M to produce a larger independent
subset, contradicting the way M was chosen. If dim W = dim V', then any basis of W is
still independent in V| whence it spans V' by previous results, forcing V' = W. (Note
however that infinite-dimensional vector space V can have proper subspaces W of the
same dimension, e.g. the subspace of all linear combinations of odd powers 1,z,z3,... of
the variable x in the space of polynomials in x. This same example shows that a countable
independent subset of a countable dimensional space need not span the space; similarly a
countable spanning subset need to be independent in such a space.)

Now we are finally ready to make precise our earlier informal statement that a subspace
of R™ looks just like R™ for some m < n. Any such subspace S has dimension at most n
and thus a basis v7, . .. , ¥, for some m. Now we have a bijection f from R™ onto S sending
the m-tuple (a1,...,a;,) to the combination ) a;v;. The definition of basis guarantees
that this map is indeed a bijection. It is a lot more than just a set-theoretic bijection,
however, since we have f(v+ W) = f(v) + f(W), f(kV) = kf(V) for all ¥,w, € R™ k € R.
We have seen such maps before and called them linear; we now officially decree that any
map f : V — W between a pair V, W of vector spaces is called linear whenever it satisfies
these properties. A linear map between vector spaces that is also a bijection is called an
isomorphism and the vector spaces are called isomorphic; they can then be regarded as
essentially the same for most purposes. Thus any finite-dimensional (real) vector space V'
is isomorphic to R™ for n = dim V' (and not to R™ for any m # dim V).

Probably the simplest example of an infinite-dimensional vector space is the set of
polynomials in one variable z; here a basis is given by 1,z,22,... You might think that
this same set would be a basis for the much larger set of functions analytic at 0, since any
such function f(z) by definition admits a power series expansion »_ a,z" that converges
to f(x) at least for |z| < R for some R > 0. Recall however that vectors in a vector
space must be finite linear combinations of basis vectors; we never consider infinite series
of vectors in linear algebra. Thus the space spanned by 1,z,22,... indeed consists of
polynomials in x and nothing else.

Now let V, W be any two vector spaces over R (not necessarily finite-dimensional). A
function (or map) f from V to W is called linear if f(vi+wvz) = f(v1)+f(v2), f(rv) = rf(v)
for all v,v1,v9 € V,r € R. If V happens to be finite-dimensional, say with basis vy, ... ,v,,
and if wq,... ,w, are any n vectors in W, then there is a unique linear map sending v; to



w; for all 7; more generally, it sends any linear combination Y r;v; to the corresponding
combination ) r;w; of the w;. (One easily checks that the map defined by this last formula
is indeed linear.) Thus a linear map is completely determined by what it does to a basis,
and what it does to that basis is arbitrary. Now suppose in addition that W is finite-
dimensional, say with basis wi,... ,w;,. Given a linear map f from V to W, we have
f(vi) =>j=1"aj;w; for some a;; € R, where the indices 4, j run from 1 to n and 1 to
m, respectively. You can probably guess from the notation I have used what my next step
is: define a matrix A whose ij-th entry is a;;. We call this the matrix of f with respect

to the bases {v1,... v}, {w1,... ,wn} of V,W. Given now a vector v = > i = 1"r;u;
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in V, make a column vector v/ = and write AV = @' = - |. Then you can
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check that the combination E;nzl sjw; is exactly the image f(v) of v under f. Hence,
once bases B, B’ of two finite-dimensional vector spaces V, W are fixed, and we set up an
m X n matrix whose 7th column consists of the coefficients of the vectors in B’ in the image
f(b;) of the ith vector b; in B, the resulting matrix is the matrix of f with respect to B
and B’. An arbitrary combination of vectors in B’ lies in the range of f if and only if its
coefficients form a column vector spanned by the columns of this matrix; we call this span
the column space of the matrix.



