
Lecture 4-10

Last time we showed that any generating set of a finite-dimensional vector space V
can be shrunk to a basis of V . Similarly, if we start with an independent subset v1, . . . , vm
of V we can enlarge it to a basis of V , simply by adding a basis w1, . . . , wn of V to
the original list v1, . . . , vm and running through the resulting list v1, . . . , vm, w1, . . . , wn,
eliminating vectors that are linear combinations of preceding vectors, until we obtain a
basis of V ; we never eliminate any vi during this procedure, since no vi is a combination of
preceding ones. We also see that every subspace W of V is also finite-dimensional and in
fact of dimension at most that of V and the dimension of W equals that of V if and only
if W = V . This follows since no independent subset of W can have more than dimV (the
dimension of V ) vectors, whence there is a maximal subset M of independent vectors in
W (one not properly contained in any other). This subset must then also be a basis of W ,
since if any w ∈W is not in its span, we could add w to M to produce a larger independent
subset, contradicting the way M was chosen. If dimW = dimV , then any basis of W is
still independent in V , whence it spans V by previous results, forcing V = W . (Note
however that infinite-dimensional vector space V can have proper subspaces W of the
same dimension, e.g. the subspace of all linear combinations of odd powers 1, x, x3, . . . of
the variable x in the space of polynomials in x. This same example shows that a countable
independent subset of a countable dimensional space need not span the space; similarly a
countable spanning subset need to be independent in such a space.)

Now we are finally ready to make precise our earlier informal statement that a subspace
of Rn looks just like Rm for some m ≤ n. Any such subspace S has dimension at most n
and thus a basis ~v1, . . . , ~vm for some m. Now we have a bijection f from Rm onto S sending
the m-tuple (a1, . . . , am) to the combination

∑
aivi. The definition of basis guarantees

that this map is indeed a bijection. It is a lot more than just a set-theoretic bijection,
however, since we have f(~v + ~w) = f(~v) + f(~w), f(k~v) = kf(~v) for all ~v, ~w,∈ Rm, k ∈ R.
We have seen such maps before and called them linear; we now officially decree that any
map f : V →W between a pair V,W of vector spaces is called linear whenever it satisfies
these properties. A linear map between vector spaces that is also a bijection is called an
isomorphism and the vector spaces are called isomorphic; they can then be regarded as
essentially the same for most purposes. Thus any finite-dimensional (real) vector space V
is isomorphic to Rn for n = dimV (and not to Rm for any m 6= dimV ).

Probably the simplest example of an infinite-dimensional vector space is the set of
polynomials in one variable x; here a basis is given by 1, x, x2, . . . You might think that
this same set would be a basis for the much larger set of functions analytic at 0, since any
such function f(x) by definition admits a power series expansion

∑
anx

n that converges
to f(x) at least for |x| < R for some R > 0. Recall however that vectors in a vector
space must be finite linear combinations of basis vectors; we never consider infinite series
of vectors in linear algebra. Thus the space spanned by 1, x, x2, . . . indeed consists of
polynomials in x and nothing else.

Now let V,W be any two vector spaces over R (not necessarily finite-dimensional). A
function (or map) f from V to W is called linear if f(v1+v2) = f(v1)+f(v2), f(rv) = rf(v)
for all v, v1, v2 ∈ V, r ∈ R. If V happens to be finite-dimensional, say with basis v1, . . . , vn,
and if w1, . . . , wn are any n vectors in W , then there is a unique linear map sending vi to



wi for all i; more generally, it sends any linear combination
∑

rivi to the corresponding
combination

∑
riwi of the wi. (One easily checks that the map defined by this last formula

is indeed linear.) Thus a linear map is completely determined by what it does to a basis,
and what it does to that basis is arbitrary. Now suppose in addition that W is finite-
dimensional, say with basis w1, . . . , wm. Given a linear map f from V to W , we have
f(vi) =

∑
j = 1majiwj for some aji ∈ R, where the indices i, j run from 1 to n and 1 to

m, respectively. You can probably guess from the notation I have used what my next step
is: define a matrix A whose ij-th entry is aij . We call this the matrix of f with respect
to the bases {v1, . . . , vn}, {w1, . . . , wm} of V,W . Given now a vector v =

∑
i = 1nrivi

in V , make a column vector ~v′ =


r1
r2
·
·
·
rn

 and write A~v′ = ~w′ =


s1
·
·
·
sm

. Then you can

check that the combination
∑m

j=1 sjwj is exactly the image f(v) of v under f . Hence,
once bases B,B′ of two finite-dimensional vector spaces V,W are fixed, and we set up an
m×n matrix whose ith column consists of the coefficients of the vectors in B′ in the image
f(bi) of the ith vector bi in B, the resulting matrix is the matrix of f with respect to B
and B′. An arbitrary combination of vectors in B′ lies in the range of f if and only if its
coefficients form a column vector spanned by the columns of this matrix; we call this span
the column space of the matrix.


