
Lecture 4-1

We continue with the method of Lagrange multipliers for maximizing or minimizing
functions of several variables defined only on (or restricted to) level sets of functions. What
we are doing, in the words of the title of §16.7, is computing maxima and minima with
side conditions; this is sometimes also called computing constrained maxima and minima.

Given a function f : Rn → R and the level set S corresponding to the function
g : Rn → R and the constant c, we know that the equation g(x1, . . . , xn) = c can be solved
differentiably for any of the variables xi in terms of the others near a point ~a = (a1, . . . , an)
such that (a1, . . . , an ∈ S (so that g(a1, . . . , an) = c) provided that ∂g/∂xi(~a) 6= 0; if
we do this and insert the resulting expression for xi into the formula for f , we obtain
a function of the xj for j 6= i (still denoted f , following our usual sloppiness in nota-
tion). If this function has a local maximum or minimum at ~a, its xj partial, given by

∂f/∂xj(~a) + (∂f/∂xi)(~a)(∂xi∂xj)(~a) = ∂f/∂xj(~a) − (∂f/∂xi(~a))
−∂g/∂xj(~a)
∂g/∂xi(~a)

= 0, whence

(∂f∂xj)(∂g/∂xi)(~a) − (∂f/∂xi)(∂g/∂xj)(~a) = 0. The only way that this can hold for all

j 6= i and for all i with ∂g/∂xi(~a) 6= 0 is to have either ∇g(~a) = ~0 or ∇f(~a) = λ∇g(~a)
for some λ ∈ R. This then is the criterion for ~a to be a critical point of f when this
function is restricted to S. The scalar λ is called a Lagrange multiplier. Note that the two
possibilities ∇g(~a) = ~0 and ∇f(~a) = λ∇g(~a) can be captured by the single condition that
∇f(~a)×∇g(~a) = ~0, if n = 3. Note also that ultimately we (usually) do not care about the
value of λ; it is just a tool that we use to solve max-min problems.

In practice, just as we have neglected the possibility that ∇f(~a) is undefined in com-
puting critical points of a function f , so we also neglect the possibility that ∇g(~a) = ~0
as a critical point ~a in this context, concentrating our attention (at least in the examples
we consider) on smooth points of the level set S. What we will find in most cases is
that constrained maxima and minima occur at points that are highly symmetric in some
sense. For example, returning to the problem discussed in an earlier lecture of maxi-
mizing f(x, y) = xy subject to the constraint g(x, y) = x2 + y2 = 1, we find that the
Lagrange multiplier condition ∇g = λ∇f translates to 2x = λy, 2y = λx for some λ,
whence y2 = x2 = 2λxy, forcing either x = y = ±

√
2/2 or x = −y = ±

√
2/2. (Notice that

we had to continue to bear the constraint g(x, y) = 1 in mind even after we had set up
the Lagrange equations.) We will not attempt to determine the nature of all of these crit-
ical points (this requires techniques beyond the scope of this course) but we will compare
the values of f at all critical points to find the absolute maximum and minimum. Doing
this, we find that the maximum value of 1/2 occurs at ±(

√
2/2,
√

2/2) while the minimum
value of −1/2 occurs at ±(

√
2/2,−

√
2/2), in accordance with our earlier calculation, which

exploited the parametrization (cos t, sin t) of the level set.

Next we look at the very classical problem of maximizing the product x1 . . . xn of n
variables xi subject to the constraints that xi ≥ 0 for all i and

∑
xi = 1. Note before we

compute any partial derivatives that this product can be made arbitrarily small (though
positive) by letting one of the variables approach 0; so we know in advance that if there
is just one critical point it must be the unique maximum. Next, Lagrange multipliers tell
us that we must have for every index i that the product of the xj for j 6= i equals λ for
some fixed λ, whence on multiplication by xi we deduce that all xi must be equal; their



common value by the constraint is 1/n. More generally, the arithmetic mean (1/n)
∑n

i=1 xi
of n positive numbers is always greater than or equal to their geometric mean (

∏n
i=1 xi)

1/n,
with equality if and only if all the numbers are equal; this the famous arithmetic-geometric
mean inequality, which is a workhorse in solving many problems involving inequalities.

Turning now to a problem whose solution is less symmetric than the previous ones,
we minimize the surface area xy + 2xz + 2yz of a box of dimensions x, y, z without a
top of specified volume 12 cubic feet (Example 5 in the text, p. 846). Here the Lagrange
equations become y+2z = λyz, x+2z = λxz, 2x+2y = λxy. Multiplying the first equation
by x, the second by −y, and adding, we get 2z(x− y) = 0, which since z 6= 0 implies that
x = y. Replacing y by x in the third equation we get 4x = λx2, which since x 6= 0 implies
that x = y = 4/λ; then the first equation shows that z = 2λ. Finally, plugging in the
condition xyz = 12 we get λ = 2

3√3
, x = y = 2 3

√
3, z = 3

√
3. This unique critical point must

be a minimum as it is easy to see that the surface area can be made arbitrarily large by
making z very small. Hence the box with least surface area has the same length as width,
but height half the length or width.

Finally, we let A = (aij) be a symmetric n × n matrix, so that aij = aji for all
indices i, j. We consider the problem of maximizing or minimizing the quantity f(~x) =
(~x)tA~x with constraint ||~x|| = 1, where ~x = (x1, . . . , xn) is a column vector of variables
xi and ~xt is the same vector written as a row vector. Then we have f(~x) =

∑n
i=1 aiix

2
i +

2
∑n

i,j=1,i<j aijxixj by the definition of matrix multiplication; our constraint is equivalent

to requiring that
∑
x2i = 1. The Lagrange multipliers tell us that the condition to be a

critical point is that
∑n

j=1 2aijxj = 2λxi, for all indices i. This last condition says exactly
that ~x is a so-called eigenvector for A, meaning that A~x = λ~x; we call λ the corresponding
eigenvalue. Here the existence and value of λ are much more interesting than the solution
to the problem. We will explore this situation in more detail later.


