
Lecture 3-31

Continuing from last time, we studied functions f : R2 → R of two variables having
a critical (also sometimes called stationary) point at (a, b) and continuous second-order
partials there. We learned that if we set A = fxx(a, b), B = fxy(a, b), C = fyy(a, b), then
A > 0, AC − B2 > 0 imply that (a, b) is a local minimum, while A < 0, AC − B2 > 0
imply that (a, b) is a local maximum. The condition AC − B2 < 0 implies that (a, b) is
a saddle point. A convenient way to reformulate (and remember) this condition is to set
up the 2 × 2 Hessian matrix H of f at (a, b), whose rows and columns are indexed by
the variables x1 = x, x2 = y and whose ijth entry is fxi,xj

(a, b). Then the condition to
be a local minimum is that detH,h11 > 0; the condition to be a local maximum is that
detH > 0, h11 < 0. The condition to be a saddle point is that detH < 0. We can see at
once from simple examples, by the way, that we can say nothing in the case detH = 0:
the functions f(x, y) = x4 + y2, g(x, y) = −x4 − y2, h(x, y) = x4 − y2 all have (0, 0) as a
critical point with detH = 0, with (0, 0) being a local minimum in the first case, a local
maximum in the second, and a saddle point in the last case.

What about functions f(x1, . . . , xn) of more than two variables? To analyze such
functions, we first of all need the multivariable analogue of the quadratic approximation;
in the case of a critical point (a, b), the approximation to f(~a + ~h) − f(~a) is given by
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ii+

∑
i<j≤n fij(~a)hihj , where ~h = (h1, . . . , hn). Now to understand this

last homogeneous quadratic function of n variables, we need more linear algebra (which
we will sneakily learn by doing calculus); for now we just note that we can rewrite it as

(~h)tH~h, where we write ~h as a column vector, (~h)t for the corresponding row vector, and
the ijth entry hij of H is (1/2)fij(~a) (so that H is the Hessian matrix defined above
divided by 2). We will need to study eigenvalues and eigenvectors (to be defined later)
of square matrices (having the same number of rows as columns) before we can say more
about this situation.

For now we look at a couple of examples. If f(x, y) = xye−(x2+y2)/2 (Example 6 in

the text, p. 833), then we find that the x- and y-partials of f are y(x2 − 1)e−(x2+y2)/2,

x(y2 − 1)e−(x2+y2)/2, respectively, so there are just five critical points, namely (0, 0) and
(±1,±1). Defining as usual A,B,C to be the xx, xy, yy-partials of f at these points and
setting D = detH = AC − B2, we find that B = D = −1, A = C = 0 at (0, 0), whence
this point is a saddle point, while A,C,D > 0, B = 0 at ±(1, 1), whence these points
are local minima, and A,C < 0, D > 0, B = 0 at ±(1,−1) and these points are local
maxima. This function has f(x, y) → 0 as x, y− → ∞, so it must have an absolute
maximum and minimum on the xy-plane (note that this property does not hold generally
for differentiable functions f , as the plane is not a bounded set). As there are only
two local maxima, the common value e−1 of f(x, y) at both of them must be the global
maximum (attained by (1, 1)); its negative is the global minimum, attained at (−1, 1). If
g(x, y) = xy + (1/x) + (1/y), then gx = y− (1/x2), gy = x− (1/y2), whence gx = gy = 0 if
and only if x = y and x3 = 1, or if and only if x = y = 1. Here we don’t have to bother
with the second-derivative test; since |g(x, y)| → ∞ as x → ∞ or y → ∞ and g(x, y) can
have either sign if one or both of x, y are large in absolute value, it follows that g(x, y) has
no global maximum or minimum overall, but must have a global minimum when restricted



to the first quadrant, which must occur at the unique critical point (1, 1).
In practice one often deals with functions defined on a closed rather than an open

subset of Rn. As previously noted, such a function f having a local maximum or minimum
at a point will typically not have partial derivatives equal to 0 at that point. It is still
true, however, that if a local maximum or minimum of f occurs at a point not on the
boundary, then the partials ∂f/∂xi (if defined) must be 0 at such a point. As for the
boundary points, they often form one or more parametrized curves; we can maximize or
minimize f along such a curve by standard one-variable techniques. Thus for example if
f(x, y) = x2 + y2− 2x− 2y + 4 and we consider only (x, y) lying on the disk D of radius 3
centered at (0, 0) (Example 1 in the text, p. 837), then ∇f = (2x− 2, 2y− 2), whence the
only critical point is (1, 1) (which does lie on the disk). On the boundary of the disk, we
have x = 3 cos t, y = 3 sin t, f(x, y) = 13− 6 cos t− y sin t, whence critical points of f occur
only at points where sin t = cos t. By directly eamining all critical points (as we must to
determine global maxima and minima generally) we find that the unique minimum value
2 of f occurs at (1, 1) while the maximum value 13 + 6
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that functions defined on nonclosed sets can fail to have maxima, minima, or both; for
example, the function f(x, y) = x2+y2 fails to have even a local maximum or minimum on
the “punctured disk” defined by the inequalities 0 < x2 + y2 < 1. We will learn a further
technique, known as the method of Lagrange multipliers, next time, to deal with functions
defined on level sets not admitting explicit parametrizations.


