
Lecture 3-30

Welcome back, if only virtually! Note first and foremost that the first HW assignment
is not due until Monday, April 6, in accordance with the Provost’s instructions not to
assign any written work during the first week of classes.

We begin with some basic matrix definitions that come into play in the definition we
gave last term of differentiability of vector-valued functions of a vector variable. A matrix
M is a finite rectangular array of numbers; it is said to be m × n if it has m rows and n
columns. The numbers (called entries) in an m× n matrix A are typically denoted aij , so
that one uses the small letter corresponding to the capital letter denoting the matrix and
denotes the entries themselves by double subscripts; here the first subscript i refers to the
ith row (counting form the top) and the second one j refers to the jth column (counting
from the left). Thus the upper leftmost entry of A is denoted a11, the lower rightmost one
amn, and so on. We can specify a matrix A by giving a formula for aij for all i, j (and
making it clear what the ranges of the indices i, j are); whenever we give a formula for aij ,
we write A for the matrix with ijth entry aij . A column vector is an n× 1 matrix, where
the vector lies in Rn. The product AV of an m× n matrix A and an r × 1 column vector
V is defined if and only if r = n; in that case it is an m× 1 column vector whose ith entry
from the top is Ai · V , where Ai is the ith row of A. More generally, given two matrices
A,B of possibly different sizes, the product AB is defined if and only if ABi is defined for
every column Bi of B, and in that case the ith column of AB is the column vector ABi.
Thus AB is defined if and only if A is m× n while B is n× r, for some m,n, r.

We have already observed that this definition fits perfectly into the definition of dif-
ferentiability for vector-valued functions. Thus given a function ~f : Rn → Rm it is differ-
entiable at ~a ∈ Rn if and only if all coordinate functions fi of ~f are differentiable at ~a. If
this holds then all gradients ∇fi(~a) must be defined. The matrix whose ith row if ∇fi(~a)
(so that its ijth entry is ∂fi/∂xj(~a), where the variables are denoted x1, . . . , xn as usual)

is called the Jacobian matrix of ~f at ~a and is sometimes denoted D~f(~a), or just D~f , if ~a is
understood. Now the multivariable chain rule can be stated in an especially elegant form:
if ~f : Rn → Rm is differentiable at ~g(~a) and ~g : Rp → Rn is differentiable at ~a ∈ Rp, then

the composite function ~f(~g) is differentiable at ~a and D~f(~g)(~a) = D~f(~g(~a))D~g(~a). This
holds because if we write f1, . . . , fm for the coordinates of f , regard each fi as a function
of the coordinates g1, . . . , gn of ~g, and finally denote the variables on which ~g depends as
x1, . . . , xp, then we have ∂fi/∂xk =

∑n
j=1(∂fi/∂gj)(∂gj/∂xk). Here of course it must be

understood that the partials of the fi are to be evaluated at ~g(~a), while the partials of the
gj are to be evaluated at ~a.

With this piece of linear algebra under our belt, we now return to Chapter 16 of
Salas-Hille. We left off with real-valued functions f defined on an open subset U of Rn;
following our earlier work with real-valued functions of a real variable, we want to give
conditions for f to have a local maximum or minimum at ~a ∈ U . We have already
observed (and it is easy to see directly) that in order for ~a to have a chance of being a local
maximum or minimum of f , we must have (∂f/∂xi)(~a) either undefined or equal to 0 for
all indices i; accordingly, we say that ~a ∈ U is critical (or stationary) for f if this condition
holds. (In practice, we will ignore the possibility that some partial of f is undefined at ~a,



concentrating on the case where ∇f(~a) = ~0.) Now a natural question is whether a critical
point ~a for f is a local maximum, a local minimum, or neither (if it is neither, it is called
a saddle point, as in the one-variable case). To answer this question we have to look at
the quadratic rather than just the linear approximation of f at ~a = (a, b). If n = 2 and
A,B,C respectively denote fxx(~a), fxy(~a), fyy(~a) then, assuming f is twice differentiable

at ~a, we get that f(a+h,b+k)−f(a,b)−(A/2)h2−Bhk−(C/2)k2

h2+k2 → 0 as (h, k) → (0, 0) from the
definition of twice differentiability. This reduces matters to studying the homogeneous
quadratic polynomial q(h, k) = (A/2)h2 + Bhk + (C/2)k2; it is not difficult to show that
if q(h, k) > 0 for all (h, k) 6= (0, 0), then q(h, k)/(h2 + k2) is bounded between two positive
constants for all (h, k) 6= (0, 0), whence f(a + h, b + k) > f(a, b) for all such (h, k) and f
has a local minimum at (a, b). Conversely, if instead q(h, k) < 0 for all (h, k) 6= (0, 0), then
f(a + h, b + k) < f(a, b) for all such (h, k) and f has a local maximum at (a, b). Now we
can also have q(h, k) > p(h2 +k2) whenever (h, k) is a nonzero multiple of one vector ~v, for
some positive constant p, while q(h, k), q(h2 + k2) whenever (h, k) is a nonzero multiple of
another vector ~w, for some negative constant q. In this case we can say for sure that (a, b)
is a saddle point for f . Finally, it is possible that q(h, k) = 0 for some (h, k) 6= (0, 0); in
this case, q(h, k) does not give us enough information to determine whether f has a local
maximum, a local minimum, or a saddle point at (a, b).

Thus we must decide for a given homogeneous quadratic function q(x, y) = ax2 +
bxy + cy2 when it takes only positive values, when only negative values, and when both
positive and negative values, for x, y not both 0. Dividing by x2 and regarding the resulting
function as a quadratic polynomial in y/x it is easy to decide that q(x, y) takes only positive
values (we say it is positive definite) if and only if a > 0, b2−4ac < 0; it takes only negative
values (and is called negative definite) if and only if a < 0, b2−4ac < 0; and finally it takes
both positive and negative values (and is called indefinite) if b2 − 4ac > 0. If b2 − 4ac = 0
then q(x, y) takes the value 0 infinitely often and all bets are off. Translating back to our
function f and recalling our earlier notation, we find that if A > 0, AC − B2 > 0 then f
has a local minimum at ~a; if A < 0, AC − B2 > 0, then f has a local maximum at ~a; if
AC − B2 < 0, then f has a saddle point at ~a. The case AC − B2 = 0 is indeterminate;
any behavior of ~a as a critical point is possible in this case.


