Lecture 3-9

We begin our review with the most recent material on differentiability. We give a
slightly different (but equivalent) definition: a function f : R™ — R is differentiable at a
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0. If such a vector d exists, then it must be the gradient vector Vf(@); in particular,
all partials of f must exist at @. If these partials exist in a neighborhood of @ and in
addition all are continuous at a, then f is always differentiable there; we say that f is
continuously differentiable at @ in this situation. As a tricky exercise, show that the
function f(z,y) = 2? +y? if z,y € Q, f(x,y) = 0 otherwise, is actually differentiable at
(0,0). If f is differentiable at @, then a great many rates of change of f at @ can be read

off from V f(@); in particular, for any unit vector @, the directional derivative of f in the @
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point @ € R™ if there is a constant vector d = (di, ... ,d,) with lim;; 5

direction, defined to be lim;_. , is given by V f(@)-u; more generally, given any
parametrized curve 7(t) passing through @ at time t = to, the composite function f(7(t))
is also differentiable at to and its derivative there is V f(@) - 7 (t9). As a consequence, any
parametrized curve 7(t) lying in a level set S = {Z : ¢g(Z) = ¢} for some differentiable
function g and constant ¢ has Vg(a) - 7"(to) = 0 if 7(t9) = @. For this reason, whenever
Vg(a) # 0 for some @ € S, we call the hyperplane passing through @ with normal vector
V(@) the tangent hyperplane to the level set S at @; if instead Vg(@) = 0, then we say
that the tangent hyperplane to S at @ is undefined.

Returning now to the first week of the course, we recall the standard parametriza—

tions of the conic sections; the ellipse in standard position with equation 2> + 9z = 1,1t is
parametrized by x = acost,y = bsint, while the hyperbola i—z — z—j = 1 is parametrized
by © = tacosht,y = bsinht (we could also set x = asect,y = btant). The parabola
y? = 4cx is of course parametrized via z = t?/(4c),y = t. A point (x(t),y(t) of a
general parametrized curve in the plane has tangent line of slope y'(t)/z'(t) whenever

( ) 7é 0 the arclength of the curve segment corresponding to the interval [a,b] for ¢ is
f \/ x t)2dt. The curve is said to be parametrized by arclength if the length

\/ x!( of the tangent vector is constantly equal to 1; we use the letter s to denot
the arclength parameter. The curvature of a plane curve at (x(t),y(t)) (the amount it

bends per unit of arclength) is given by the formula |xl((31(’;;g?_;,@é;()’;))§:2(t)| A closed curve

segment (z(t),y(t)) for t € [a,b] (such that (z(a),y(a)) = (x(b),y(b))) encloses a region of
area [xdy = ffx(t)y’(t) dt, provided that (z(t),y(t)) traces the boundary of this region
counterclockwise as ¢ increases from a to b.

More generally, a parametrized curve 7(t) = (r1(t),... ,r,(t)) in R™ has tangent vector
7 (t) = (ri(t),... 7 (t)) at any point; the coordinate functions r;(t) must be differentiable
by definition of a parametrized curve. (Note in this case that the notion of the slope of
a line makes no sense in R™ for n > 2, so the earlier formula y'(¢)/x'(t) does not carry
over. ) The arclength of the curve segment corresponding to the interval [a, b] for ¢ is given

by f || (t)|| dt, as for plane curves, and we say as before that 7(t) is parametrized by

arclength if || (¢)|| = 1 for all ¢. In any event, the unit tangent vector T(t) is defined to
7 (t)/||7(t)||, provided that 7 (t) # 0; since we then must have T(t) - T'(t) = 0, we call



the unit vector T7(t)/||T"(t)|| the principal unit normal (again provided that T7(t) # 0).
The curvature of 7(t) is given by ||dT'/ds||; the derivative of the unit tangent vetor T with
respect to arclength s; by the chain rule this may also be computed as ||(dT /dt)/(ds/dt)]|,
where ds/dt = ||7(t)||, as mentioned above.

For a general curve 7(t), not necessarily parametrized by arclength, we have the re-
spective formulas v’ and sv? for the tangential and normal components of acceleration;
that is, for the coefficients of the unit tangent 7T'(f) and principal unit normal N(¢) in

the formula for the acceleration vector @(t) = 7(t); here the scalar v denotes the speed

17 (t)||. If n = 3, so that T(¢) and N(t) live in R3, the cross product B(t) is called the
(unit) binormal vector.

An important example of a parametrized curve is the cycloid of radius a; this is
the path traced by a point on a circumference of a wheel of radius a that rolls without
slipping down the z-axis in the positive direction, starting at (0,0). The equations are
x(t),y(t)) = (a(t —sint),a(1l — cost) and the length of one complete arch of this cycloid is
8a.

Turning now to sequences and series, we recall that a power series > a,z™ has a
radius of convergence R which captures the values of x for which the series converges;
more precisely, the series converges if |x| < R and diverges if |z| > R (so that it always
converges if R = oo but converges only for x = 0 if R = 0). The radius of convergence R is
usually given by the ratio test: we have R = lim,,_, o |ay/an+1| whenever the limit exists.
More generally, the same is true of power series »_ a,(z — a)”™ in x — a: these too have
radii of convergence R, so that they converge if |x — a] < R and diverge if |z — a| > R.



