
Lecture 3-9

We begin our review with the most recent material on differentiability. We give a
slightly different (but equivalent) definition: a function f : Rn → R is differentiable at a

point ~a ∈ Rn if there is a constant vector ~d = (d1, . . . , dn) with lim~h→~0
(f(~a+~h)−f(~a)−~d·~h

||~h||
=

0. If such a vector ~d exists, then it must be the gradient vector ∇f(~a); in particular,
all partials of f must exist at ~a. If these partials exist in a neighborhood of ~a and in
addition all are continuous at ~a, then f is always differentiable there; we say that f is
continuously differentiable at ~a in this situation. As a tricky exercise, show that the
function f(x, y) = x2 + y2 if x, y ∈ Q, f(x, y) = 0 otherwise, is actually differentiable at
(0, 0). If f is differentiable at ~a, then a great many rates of change of f at ~a can be read
off from ∇f(~a); in particular, for any unit vector ~u, the directional derivative of f in the ~u

direction, defined to be limt→0
f(~a+t~u)−f(~a)

t , is given by ∇f(~a)·~u; more generally, given any
parametrized curve ~r(t) passing through ~a at time t = t0, the composite function f(~r(t))
is also differentiable at t0 and its derivative there is ∇f(~a) · ~r′(t0). As a consequence, any
parametrized curve ~r(t) lying in a level set S = {~x : g(~x) = c} for some differentiable
function g and constant c has ∇g(~a) · ~r′(t0) = 0 if ~r(t0) = ~a. For this reason, whenever
∇g(~a) 6= ~0 for some ~a ∈ S, we call the hyperplane passing through ~a with normal vector
∇g(~a) the tangent hyperplane to the level set S at ~a; if instead ∇g(~a) = ~0, then we say
that the tangent hyperplane to S at ~a is undefined.

Returning now to the first week of the course, we recall the standard parametriza-

tions of the conic sections; the ellipse in standard position with equation x2

z2 + y2

b2 = 1, it is

parametrized by x = a cos t, y = b sin t, while the hyperbola x2

a2 − y2

b2 = 1 is parametrized
by x = ±a cosh t, y = b sinh t (we could also set x = a sec t, y = b tan t). The parabola
y2 = 4cx is of course parametrized via x = t2/(4c), y = t. A point (x(t), y(t) of a
general parametrized curve in the plane has tangent line of slope y′(t)/x′(t) whenever
x′(t) 6= 0; the arclength of the curve segment corresponding to the interval [a, b] for t is∫ b

a

√
x′(t)2 + y′(t)2 dt. The curve is said to be parametrized by arclength if the length√

x′(t)2 + y′(t)2 of the tangent vector is constantly equal to 1; we use the letter s to denot
the arclength parameter. The curvature of a plane curve at (x(t), y(t)) (the amount it

bends per unit of arclength) is given by the formula |x
′(t)y′′(t)−y′(t)x′′(t)|
(x′(t)2+y′(t)2)3/2

. A closed curve

segment (x(t), y(t)) for t ∈ [a, b] (such that (x(a), y(a)) = (x(b), y(b))) encloses a region of

area
∫
x dy =

∫ b

a
x(t)y′(t) dt, provided that (x(t), y(t)) traces the boundary of this region

counterclockwise as t increases from a to b.
More generally, a parametrized curve ~r(t) = (r1(t), . . . , rn(t)) in Rn has tangent vector

~r′(t) = (r′1(t), . . . , r′n(t)) at any point; the coordinate functions ri(t) must be differentiable
by definition of a parametrized curve. (Note in this case that the notion of the slope of
a line makes no sense in Rn for n > 2, so the earlier formula y′(t)/x′(t) does not carry
over.) The arclength of the curve segment corresponding to the interval [a, b] for t is given

by
∫ b

a
||~r′(t)|| dt, as for plane curves, and we say as before that ~r(t) is parametrized by

arclength if ||~r′(t)|| = 1 for all t. In any event, the unit tangent vector ~T (t) is defined to

be ~r′(t)/||~r′(t)||, provided that ~r′(t) 6= ~0; since we then must have ~T (t) · ~T ′(t) = 0, we call



the unit vector ~T ′(t)/||~T ′(t)|| the principal unit normal (again provided that ~T ′(t) 6= ~0).

The curvature of ~r(t) is given by ||d~T/ds||; the derivative of the unit tangent vetor ~T with

respect to arclength s; by the chain rule this may also be computed as ||(d~T/dt)/(ds/dt)||,
where ds/dt = ||~r′(t)||, as mentioned above.

For a general curve ~r(t), not necessarily parametrized by arclength, we have the re-
spective formulas v′ and κv2 for the tangential and normal components of acceleration;
that is, for the coefficients of the unit tangent ~T (t) and principal unit normal ~N(t) in
the formula for the acceleration vector ~a(t) = ~r′′(t); here the scalar v denotes the speed

||~r′(t)||. If n = 3, so that ~T (t) and ~N(t) live in R3, the cross product ~B(t) is called the
(unit) binormal vector.

An important example of a parametrized curve is the cycloid of radius a; this is
the path traced by a point on a circumference of a wheel of radius a that rolls without
slipping down the x-axis in the positive direction, starting at (0, 0). The equations are
x(t), y(t)) = (a(t− sin t), a(1− cos t) and the length of one complete arch of this cycloid is
8a.

Turning now to sequences and series, we recall that a power series
∑
anx

n has a
radius of convergence R which captures the values of x for which the series converges;
more precisely, the series converges if |x| < R and diverges if |x| > R (so that it always
converges if R =∞ but converges only for x = 0 if R = 0). The radius of convergence R is
usually given by the ratio test: we have R = limn→∞ |an/an+1| whenever the limit exists.
More generally, the same is true of power series

∑
an(x − a)n in x − a: these too have

radii of convergence R, so that they converge if |x− a| < R and diverge if |x− a| > R.


