
Lecture 3-6

We conclude the new material this term with a proof that the mixed partials of a
function at a point are equal whenever both are continuous, following §15.6 of the text;
next week will be spent entirely on review.

Let f : R2 → R have second-order partials fxy = ∂/∂y(∂f/∂x), fyx = ∂/∂x(∂f/∂y)
existing in a neighborhood of ~a ∈ R2 and suppose that fxy, fyx are continuous at ~a. For
nonzero h, k, consider the second-order difference D(h, k) = f(a + h, b + k) − f(a, b +
k) − f(a + h, b) + f(a, b). On the one hand, we have D(h, k) = G(a + h) − G(a), where
G(x) = f(x, b + k) − f(x, b); applying the mean value theorem first to D(h, k) and then
to G(x), we get D(h, k) = hkfyx(a′, b′) for some a′, b′ respectively between a, a + h and
b, b + k. On the other hand, we also have D(h, k) = H(b + k) − H(b), where H(y) =
f(a + h, y) − f(a, y). Applying the mean value theorem first to D(h, k) and then to
H(y), we get D(h, k) = hkfxy(a′′, b′′) for some a′′, b′′ respectively between a, a + h and
b, b + k. Dividing by hk, taking the limit as h, k → 0, and using the continuity of fxy
and fyx at ~a at the last step, we get fxy(~a) = fyx(~a), as desired. The result generalizes
immediately to functions of more than two variables: in taking a higher-order partial
derivative of a function at a point, it makes no difference in what order the variables
occur provided that all partial derivatives in question are continuous. This holds simply
because in interchanging two variables and taking partial derivatives with respect to them,
all other variables are treated as constants anyway, so it makes no difference whether they
are present or not.

This being a course where we are not afraid of skeletons in the closet, we give the
standard example of a function whose mixed partials are not equal at a point. Take

f(x, y) = xy x2−y2

x2+y2 for (x, y) 6= (0, 0), f(0, 0) = 0. I claim that fxy(0, 0) 6= fyx(0, 0). To
prove this it is essential that we not use the quotient rule, which leads to a big mess and
doesn’t apply at (0, 0) anyway, since the formula for f(x, y) at other points makes no
sense at (0, 0). Instead we compute fx(0, k) for all k directly from the definition, getting

fx(0, k) = limh→0(f(h, k) − f(0, k))/h = limh→0

hk h2−k2

h2+k2

h = −k, fxy(0, k) = −1, for all k.

Similarly fy(h, 0) = limk→0(f(h, k) − f(h, 0))/k = limk→0

hk(h2−k2)

h2+k2

k = h, so fyx(h, 0) = 1
for all h. In particular, fxy(0, 0) = −1 6= 1 = fyx(0, 0), as claimed.

What is really going on in this last example is that the function f is differentiable
but not twice differentiable at the point (0, 0). If you were to guess the definition of twice
differentiability at a point, you would probably get some of it (but I very much doubt
all of it) right. A function g : R2 → R is said to be twice differentiable at (a, b) ∈ R2 if
the first- and second-order partials gx, gy, gxx, gxy, gyx, and gyy all exist at that point, if
gxy(a, b) = gyx(a, b), and finally

lim(h,k)→(0,0)
g(a+b,h+k)−g(a,b)−∇g(a,b)·(h,k)−((1/2)gxx,gxy,(1/2)gyy)(a,b)·(h2,hk,k2)

h2+k2 = 0. Why on
earth do we see the factors of 1/2 here before the values of gxx and gyy at (a, b)? A partial
answer is that even for a homogeneous quadratic function h(x, y) = ax2 + bxy + cy2,
the constant b equals the value of hxy at (0, 0), but the constants a and c are half the
values of hxx, hyy at (0, 0). A more complete answer is that if we fix h, k as well as
a, b and look at the Taylor series expansion of a general g(a + th, b + tk), regarded as a



function of the single variable t, then the second derivative term appears with coefficient
1/2 in this expansion; since by the chain rule there are two terms contributing to the hk
term in this expansion, it winds up having coefficient gxy(0, 0), while the coefficients of
h2, k2 are (1/2)gxx(a, b), (1/2)gyy(a, b), respectively. We call the sum ∇g(a, b) · (h, k) +
((1/2)gxx(, gxy, gyy)(a, b) · (h2, hk, k2) the quadratic approximation to the difference g(a+
h, b + k) − g(a, b); it involves three more terms than the linear approximation of this
difference, but achieves a greater accuracy, being small compared to h2 + k2 rather than
just to

√
h2 + k2. A function f with continuous first- and second-order partials at a point is

always twice differentiable there and has equal mixed partials at that point; the preceding
argument shows that in fact for the mixed partials to be equal, one needs only that both
be continuous at that point; one does not need the unmixed partials fxx, fyy even to exist
at that point. In fact it turns out that even if only one of the mixed partials fxy or fyx is
continuous at (a, b), but both mixed partials exist there, then again they must be equal.

As you might expect from the preceding paragraph, linear and quadratic approxima-
tions are just the tip of the iceberg: any function with continuous partials at ~a ∈ Rm of
order up to n (where we compute the order of a partial derivative by counting how many
times we differentiate with respect to each variable and then add the results) is n times

differentiable at that point, where this last condition means that f(~a+~h)−f(~a) is approx-

imated by a polynomial of degree at most n in the coordinates h1, . . . , hn of ~h, with an
error which when divided by ||~h||n goes to 0 as ~h→ ~0. A typical coefficient of a monomial
in the hi in this approximation is the corresponding partial of f evaluated at ~a divided by
a product of factorials, one for each power of every variable in the monomial. The only
thing that matters about each partial is the number of times differentiation with respect
to each variable in turn takes place; the order in which the differentiations are performed
is irrelevant. The sum of f(~a) and the approximation is called the Taylor polynomial of
order n for f at ~a.


