
Lecture 3-4

A word about notation: given a function f : Rn → R, the definition in the book for
f to be differentiable at ~a ∈ Rn is that f(~a + ~h) = f(~a) +∇f(~a) · ~h + o(~h). This means

exactly the same thing as my definition that lim~h→~0
f(~a+~h)−f(~a)−∇f(~a)·~h

||~h||
= 0, since o(~h)

refers to a scalar quantity such that o(~h)

||~h||
→ 0 as ~h→ ~0.

Now we give an example. If f : R3 → R3 is defined by f(x, y, z) = (xyz, xy, sin z),
then f is differentiable everywhere and in particular at the point (1, 1, π). Its derivative

there has matrix

π π 1
1 1 0
0 0 −1

, since the first row of this matrix at any point (x0, y0, z0)

is the gradient of g(x, y, z) = xyz at that point, or (y0z0, x0z0, x0y0), and similarly for the
other rows. This matrix, regarded as a linear function from R3 to itself, sends the vector
(x1, x2, x3) to the vector with coordinates πx1 + πx2 + x3, x1 + x2,−x3, this vector being

the one that you get on multiplying the matrix by

x1
x2
x3

 and using the definition of the

product of a matrix and a column vector.

Continuing now from last time, suppose we have a differentiable function f : Rn → R.
We consider the set S of points where this function takes a fixed value, say c, and call this
a level set of the function f . Then the chain rule implies that if ~r(t) is any parametrized
curve lying entirely in S, then ∇f(~r(t)) · ~r′(t) = 0 for all t, since f(~r(t)) is constant. Thus
the tangent vector to any such curve at any point in the level set is orthogonal to the
gradient of the function f defining the level set at that point. Having previously defined
hyperplanes in Rn as the sets of points defined by a single equation ~a · (x1, . . . , xn) = d for
some constant d, we now define the tangent hyperplane of the level set S at ~a ∈ S to be
the set of points (x1, . . . , xn) specified by the equation ∇f(~a) · (x1, . . . , xn) = ∇f(~a) · ~a,
provided that ∇f(~a) 6= ~0; if ∇f(~a) = ~0, then we say that the tangent hyperplane os S at
~a is undefined. We call ∇f(~a) the normal vector to the tangent hyperplane at that point.
Thus the tangent to a level set at any point contains that point and also the tangent vector
at that point to any curve lying in the level set and passing through that point. As an
example, the level sets of the function f(x, y, z) = x2 + y2 + z2 are either empty (if the
constant c is negative, or one point (if it is 0), or spheres (if it is positive). The tangent plane
to the unique sphere centered at (0, 0, 0) and passing through (x0, y0, z0) 6= (0, 0, 0) has as
normal vector (2x0, 2y0, 2z0), or any nonzero multiple of this vector, e.g. (x0, y0, z0). We
know from the geometry of R3 that the unique plane passing through (x0, y0, z0) 6= ~0 with
normal vector pointing directly away from (or directly toward) the origin intersects this
sphere containing this point exactly at this point and no other. (Note that the degenerate
case of the point (x0, y0, z0) = (0, 0, 0), which lies in a level set consisting of just this point
and no other, is the unique case where ∇f(x0, y0, z0) = ~0.) We also know that if we are
at some point (x0, y0, z0) and we want to get as far away and as quickly from the origin as
possible, then of course we should walk directly away from the origin. More generally, if
we are on a level set of a function f and we want to increase the value of f as quickly as



possible, then we should move orthogonally away from the level set containing the point
where we are, in the direction where f increases.

If f : Rn → R is differentiable at ~a ∈ Rn and if ∇f(~a) 6= ~0, then the level set
S = {~x ∈ Rn : f(~x) = f(~a)} is said to have a smooth or nonsingular point at ~a; otherwise
(if ∇f(~a) = ~0) we call ~a a singular point of the level set S. We just saw that the tangent
hyperplane of ~a ∈ S is defined exactly when ~a is nonsingular. If all points of S are smooth
then we call S itself smooth. An important example of a smooth level set is the graph
of a differentiable function xn = f(x1, . . . , xn−1). This graph is defined by the equation
g(x1, . . . , xn) = f(x1, . . . , xn−1) − xn = 0; we have ∂g/∂xn = −1 6= 0 at any point on
this graph. Consequently the tangent hyperplane to this graph is always defined; it has
equation ∂f/∂x1(~a)(x1 − a1) + . . . + ∂f/∂xn−1(~a)(xn−1 − an−1) − (xn − an) = 0 at the
point (a1, . . . , an), where ~a = (a1, . . . , an−1) and an = f(~a). The vector whose first n− 1
coordinates are given by ∇f(~a) and whose last coordinate is −1 is called the downward
normal of the graph at this point, regarding this graph as a level set; the negative of this
vector is unsurprisingly called the upward normal.

Thus for example the tangent plane to the elliptic cone with equation x2 + 4y2 = z2

at the point (3, 2, 5) has normal vector ∇(x2 + 4y2− z2)(3, 2, 5) = (6, 16,−10) (Example 5
on p. 824 of the text). The equation of the tangent plane is 3(x3)+8(y−2)−5(z−5) = 0,
which simplifies to 3x + 8y− = 5z = 0; note that we divided the normal vector by 2 to
write down this equation (this is harmless). Parametric equations for the normal line are
given by (3 + 3t, 2 + 8t, 5 − 5t). The only singular (=nonsmooth) point on this elliptic
cone is its vertex (0, 0, 0); it is clear even intuitively that the cone has no tangent plane
at that point. The graph of z = g(x, y) = ln(x2 + y2) at the point (−2, 1, ln 5) has
normal vector (∂g/∂x, ∂g/∂y,−1)(−2, 1, ln 5) = (−4/5, 2/5,−1) and equation z − ln 5 =
−(4/5)(x+ 2) + (2/5)(y − 1) (Example 7 on p. 826 in the text).


