Lecture 3-3

Continuing from last time, let f : R™ — R be differentiable at a point @ € R™. One
way of measuring the rate of change of f at @ while avoiding the pitfall of dividing by a
vector is to focus on a particular direction, given by a unit vector @ € R™, and compute
lim; ¢ w; we call this quantity the directional derivative of f in the u direction
at @ (but there is no standard notation for it). This is easily computed in terms of V f(a).
f(d“ﬁ)_fﬁ)_w'vf(a) = 0, since [t| = [|td]|, from which it easily
follows that the directional derivative of f in the « direction at @ is given by the dot
product Vf(@)- . In particular, invoking an earlier calculation, we find that if V f(a@) # 0,
then the direction of V f(@) is the direction of maximal rate of increase of f at @ and the
length of V f(@) is the rate of increase of f in this direction. This gives a direct description
of V f(d@) without reference to formulas or coordinates.

Much more generally, suppose again that f is differentiable by @ and now that 7(t)
is a parametrized curve passing through @ at time ¢ = t5. Then we have the compos-
ite function sending ¢ to f(7(¢)) and it is natural to ask what its derivative is at time
to. The answer is given by the multivariable analogue of the chain rule (unsurprisingly
given the same name): the derivative f(7(tg)) of f(7(t)) at to is given by V f(a) - ¥ (to)
(or, in words, by the dot product of the gradient and tangent vectors of f and 7 at

a, respectively). To see this we again just evaluate the limit giving this derivative di-

t L to+h)) = f((to)) =V £(@) (7(to+h) —7(to))
[[7(to+h)—7(to)

ing nonzero values for h such that 7(tg + h) = 7(to), for which the fraction is unde-

M}WH, which approaches ||7(to)|| as h — 0, we see that
f(??(to-i—h)—F(tO)—Vhf(d)'(F(to-i-h)—F(tO)

Indeed, we have lim;_.q

rectly: we have tha — 0 as h goes to 0, avoid-

fined. Multiplying by ||

limy,_.q = 0; clearly this last limit still holds even if
nonzero h’s with 7(to + h) = 7(to) are allowed. Since MQL—F@O) — 7 (to) as h — 0, the
desired result follows.

The rest of this week will be spent in working out consequences of the chain rule; it
is the single most useful result in multivariable differential calculus. In terms of partial
derivatives, and changing notation a bit, the chain rule says that if a real-valued function

f depends differentiably on variables x4, ... ,x,, which in turn depend differentiably on t,
then % =3, % d;ti ; notice that we use the notation d rather than 0 for the derivatives

of f and the x; with respect to t since these functions depend on only one variable. Notice
also that we (shamefully but, alas, standardly) use the same notation f for the composite
function of ¢ and the multivariable function of the z;. Notice further that the right-hand
side is given to us as a sum of products, but can also be viewed as a single (dot) product.
Notice finally, that the same result holds, replacing all d’s by J’s, if in fact the x; depend
on other variables besides ¢, since such variables are held constant in computing 0 f/0t.
One must be especially careful about notation in this last case, however, since if only 0’s
and no d’s occur in a derivative formula then there will be no typographical clue about
whether one is referring to a composite or a noncomposite function.

We can now return to and justify an earlier computation in differential equations.
Suppose that the implicit equation f(z1,...,2z,) = c for constant c¢ is satisfied whenever
x, equals a given function g(x1,... ,x,—1) of the other variables z1,... ,z,_1, where f and
g are both differentiable. By the chain rule, on differentiating the formula f(x1,...,z,) =



¢ with respect to x, we get (0f/0x;) + (0f/0xy)(0xy,/0x;) = 0, whence Oz, /0x; =
g/0x; = _a?”%iii at any point where df/0x, # 0. (Note that if we just mindlessly

cancelled the 0f here, we would have been led to the false formula g}c //gi" ; the correct

formula definitely involves the minus sign.) In fact, we do not need to assume that z,,
is a differentiable function of the other variables in this setting; a deep result called the
Implicit Function Theorem states that the equation f(x1,... ,x,) = ¢ can always be solved
uniquely and differentiably for x,, in terms of the other variables near a point @ with
f(@) = ¢, provided that 0f/dx,(d) # 0, and in this case we have dx,,/0x;(b1,... ,by_1) =
—Of JOxi(by, ... by)/OF)Oxn(by,. .. by) forallb = (by,...,b,) sufficiently close to @ with
f(b) =ec.

In particular, the general solution to an exact differential equation M dx 4+ N dy =0
is indeed f(x,y) = ¢ with a ¢ a constant, if f is chosen so that f/0x = M,0f/0y = N.

Combining the chain rule with the mean value theorem, we get a version of the mean
value theorem that holds for functions of several variables: if a function f : R™ — R is
defined and differentiable on the line segment from a to b Withﬁc_i,l; € R", then we have
f(b) — f(a) = (b—a) - Vf(¢) for some ¥ strictly between @ and b and on the line segment
joining them. To see this, applying the mean value theorem to the function g : [0,1] — R
defined by g(t) = f((1—t)@+ tb). In particular, if f is differentiable on a convex subset C
of R™ (one containing the line segment joining any two of its points) and if Vf =0 on C,
then f is constant on C. In fact, this holds more generally if any two points of C can be
joined by a parametrized curve lying entirely in C.



