
Lecture 3-3

Continuing from last time, let f : Rn → R be differentiable at a point ~a ∈ Rn. One
way of measuring the rate of change of f at ~a while avoiding the pitfall of dividing by a
vector is to focus on a particular direction, given by a unit vector ~u ∈ Rn, and compute

limt→0
f(~a+t~u)−f(~a)

t ; we call this quantity the directional derivative of f in the ~u direction
at ~a (but there is no standard notation for it). This is easily computed in terms of ∇f(~a).

Indeed, we have limt→0
f(~a+t~u)−f(~a)−t~u·∇f(~a)

|t| = 0, since |t| = ||t~u||, from which it easily

follows that the directional derivative of f in the ~u direction at ~a is given by the dot
product ∇f(~a) ·~u. In particular, invoking an earlier calculation, we find that if ∇f(~a) 6= ~0,
then the direction of ∇f(~a) is the direction of maximal rate of increase of f at ~a and the
length of ∇f(~a) is the rate of increase of f in this direction. This gives a direct description
of ∇f(~a) without reference to formulas or coordinates.

Much more generally, suppose again that f is differentiable by ~a and now that ~r(t)
is a parametrized curve passing through ~a at time t = t0. Then we have the compos-
ite function sending t to f(~r(t)) and it is natural to ask what its derivative is at time
t0. The answer is given by the multivariable analogue of the chain rule (unsurprisingly
given the same name): the derivative f(~r(t0)) of f(~r(t)) at t0 is given by ∇f(~a) · ~r′(t0)
(or, in words, by the dot product of the gradient and tangent vectors of f and ~r at
~a, respectively). To see this we again just evaluate the limit giving this derivative di-

rectly: we have that f(~r(t0+h))−f(~r(t0))−∇f(~a)·(~r(t0+h)−~r(t0))
||~r(t0+h)−~r(t0) → 0 as h goes to 0, avoid-

ing nonzero values for h such that ~r(t0 + h) = ~r(t0), for which the fraction is unde-

fined. Multiplying by ||~r(t0+h)−~r(t0)
h ||, which approaches ||~r′(t0)|| as h → 0, we see that

limh→0
f(~r(t0+h)−~r(t0)−∇f(~a)·(~r(t0+h)−~r(t0)

h = 0; clearly this last limit still holds even if

nonzero h’s with ~r(t0 + h) = ~r(t0) are allowed. Since ~r(t0+h)−~r(t0)
h → ~r′(t0) as h→ 0, the

desired result follows.
The rest of this week will be spent in working out consequences of the chain rule; it

is the single most useful result in multivariable differential calculus. In terms of partial
derivatives, and changing notation a bit, the chain rule says that if a real-valued function
f depends differentiably on variables x1, . . . , xn, which in turn depend differentiably on t,
then df

dt =
∑n

i=1
∂f
∂xi

dxi

dt ; notice that we use the notation d rather than ∂ for the derivatives
of f and the xi with respect to t since these functions depend on only one variable. Notice
also that we (shamefully but, alas, standardly) use the same notation f for the composite
function of t and the multivariable function of the xi. Notice further that the right-hand
side is given to us as a sum of products, but can also be viewed as a single (dot) product.
Notice finally, that the same result holds, replacing all d’s by ∂’s, if in fact the xi depend
on other variables besides t, since such variables are held constant in computing ∂f/∂t.
One must be especially careful about notation in this last case, however, since if only ∂’s
and no d’s occur in a derivative formula then there will be no typographical clue about
whether one is referring to a composite or a noncomposite function.

We can now return to and justify an earlier computation in differential equations.
Suppose that the implicit equation f(x1, . . . , xn) = c for constant c is satisfied whenever
xn equals a given function g(x1, . . . , xn−1) of the other variables x1, . . . , xn−1, where f and
g are both differentiable. By the chain rule, on differentiating the formula f(x1, . . . , xn) =



c with respect to xn we get (∂f/∂xi) + (∂f/∂xn)(∂xn/∂xi) = 0, whence ∂xn/∂xi =

∂g/∂xi = −∂f/∂xi

∂f/∂xn
at any point where ∂f/∂xn 6= 0. (Note that if we just mindlessly

cancelled the ∂f here, we would have been led to the false formula ∂f/∂xi

∂f/∂xn
; the correct

formula definitely involves the minus sign.) In fact, we do not need to assume that xn

is a differentiable function of the other variables in this setting; a deep result called the
Implicit Function Theorem states that the equation f(x1, . . . , xn) = c can always be solved
uniquely and differentiably for xn in terms of the other variables near a point ~a with
f(~a) = c, provided that ∂f/∂xn(~a) 6= 0, and in this case we have ∂xn/∂xi(b1, . . . , bn−1) =

−∂f/∂xi(b1, . . . , bn)/∂f/∂xn(b1, . . . , bn) for all ~b = (b1, . . . , bn) sufficiently close to ~a with

f(~b) = c.
In particular, the general solution to an exact differential equation M dx + N dy = 0

is indeed f(x, y) = c with a c a constant, if f is chosen so that ∂f/∂x = M,∂f/∂y = N .
Combining the chain rule with the mean value theorem, we get a version of the mean

value theorem that holds for functions of several variables: if a function f : Rn → R is
defined and differentiable on the line segment from ~a to ~b with ~a,~b ∈ Rn, then we have
f(~b)− f(~a) = (~b− ~a) · ∇f(~c) for some ~v strictly between ~a and ~b and on the line segment
joining them. To see this, applying the mean value theorem to the function g : [0, 1]→ R
defined by g(t) = f((1− t)~a+ t~b). In particular, if f is differentiable on a convex subset C
of Rn (one containing the line segment joining any two of its points) and if ∇f = ~0 on C,
then f is constant on C. In fact, this holds more generally if any two points of C can be
joined by a parametrized curve lying entirely in C.


