
Lecture 3-2

Temporarily skipping Chapter 15 of the text, we proceed directly to Chapter 16, in
which the derivative of a real-valued function of n variables is (finally) defined. Consider
the simplest case of a function f from R2 to R. What should the derivative of f at a
point (a, b) be? The most straightforward approach would be to define it as the limit
lim(x,y)→(a,b)(f(x, y)− f(a, b))/(x− a, y− b), but this makes no sense as we cannot divide
by a vector. We recall at this point that the function g(x, y) defined to be xy/(x2 + y2)
if (x, y) 6= (0, 0) and 0 if (x, y) = (0, 0) must not be differentiable at 0 (even though both
partials of this function exist at (0, 0)), since this function is not even continuous at (0, 0).

For a general f : R2 → R and a point (a, b) ∈ R2 such that f is defined at all points
sufficiently close to (a, b), we have f(a+ h, b+ k)− f(a, b) = f(a+ h, b+ k)− f(a, b+ k) +
f(a, b+k)−f(a, b), which is approximately equal to hfx(a, b+k)+kfy(a, b). We therefore
agree to call f differentiable at (a, b) in this situation if its partials exist at (a, b) and for
sufficiently small h, k the difference d(h, k) = f(a+h, b+k)−f(a, b)−hfx(a, b)−kfy(a, b)
is “small enough” in the sense that lim(h,k)→(0,0) d(h, k)/||(h, k)|| = 0. Thus for example
the function g(x, y) defined above is indeed not differentiable at (0, 0), since here d(h, k) =
hk/(h2 + k2) (for h, k not both 0) and hk
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6→ 0 as (h, k)→ (0, 0). On the other

hand, the function f(x, y) = (x2 + y2) sin(1/
√

x2 + y2) for (x, y) 6= (0, 0), f(0, 0) = 0,
is differentiable at (0, 0): its partial derivatives are both easily seen to be 0 there and
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= 0, as desired. This last function is the two-variable

analogue of the function h(x) = x2 sin(1/x) for x 6= 0, h(0) = 0, that we saw in the
fall, whose derivative exists everywhere but is discontinuous at 0; our function f(x, y) is
differentiable at (0, 0) but its differential (defined below) is not. In words, we can say that
the partial derivatives of a function f at a point ~a see only how that function changes in
the coordinate directions, so their existence is not sufficient even to guarantee continuity
at that point. On the other hand, if the partials are also continuous at ~a, then we will
see below that that condition gives us enough control over the behavior of f(~x) as ~x
approaches ~a from any direction to say that f is differentiable there. We call a function f
with continuous partials at a point ~a continuously differentiable there. It is easy to check
that any function differentiable at a point ~a is also continuous there.

We also see that that there is a fundamental difference between derivatives of real-
valued functions of one variable, regarded as rates of change, and their counterparts for
n > 1 variables: the derivative of a function on Rn for n > 1, even at a single point, is too
complicated to be describable by a single real number. If f : Rn → R is differentiable at
~a = (a1, . . . , an), and if ∇f(~a) = (∂f/∂x1, . . . , ∂f/∂xn)(~a), then the derivative (actually

usually called the differential) of f at ~a is the function taking ~h = (h1, . . . , hn) ∈ Rn to the

dot product ∇f(~a) ·~h =
∑

∂f/∂xi(~a)hi. Speaking loosely, we may (and often do) identify
this function with the vector ∇f(~a) that determines it. We can describe the differential of

f at ~a, regarded as a function of the difference vector ~h, as the closest linear approximation
to f(~a + ~h)− f(~a).

For a vector-valued function ~f = (f1, . . . , fm) : Rn → Rm we have that ~f is differen-
tiable at ~a ∈ Rn (by definition) if and only if each coordinate function fi is differentiable



there. The differential of ~f at ~a then identifies with a “stack” of m vectors in Rn. Such
a stack (i.e. a rectangular array of numbers, said to be of size m× n in this case because
it has m rows and n columns) is called an m × n matrix. We will later see that any
m × n matrix may be multiplied by any column vector ~v ∈ Rn by taking the successive
dot products of its rows with ~v and arranging the results as a column vector in Rm. This
is how we compute the differential of ~f at ~a, regarding elements of the domain and range
of this differential as column vectors in Rn and Rm, respectively.

Now we can show that continuous differentiability implies differentiability: if∇f exists
and is continuous in a neighborhood of ~a, then f is differentiable there. Indeed, using the
mean value theorem n times, we have that a typical difference f(~a + ~h) − f(~a) can be
written as hn(∂f/∂xn(a1 +h1, . . . , an−1 +hn−1, a

′
n))+hn−1(∂f/∂xn−1(a1 +h1, . . . , a

′
n−1,

an +hn)) + . . .+h1∂f/∂x1(a′1, a2 +h2, . . . , an +hn), for some a′n in (an, an +hn), a′n−1 in

(an1+hn−1), and so on, where ~h = (h1, . . . , hn). Subtracting∇f(~a)·~h and dividing by ||~h||,
we get a sum of n products, all of them involving one quantity of absolute value less than 1
times another quantity going off to 0 as ~h→ ~0, so the limit of D(~h)/||~h|| is 0 as ~h→ ~0, as
desired. Given the function f(x, y) = (x2 + y4)/(x2 + y2) for (x, y) 6= (0, 0), f(0, 0) = 0, we
can use either this criterion to show that f is differentiable at (0, 0) or check this directly
from the definition.

There are useful formulas for the gradients of particular functions often arising in
physics. Recall the standard notation r introduced earlier for the length of the vector
~r = (x, y, z). Then one can check immediately that ∇r = (1/r)~r. In fact, we have the
more general formula ∇f(r) = (f ′(r)/r)~r; we will prove this later, using the chain rule for
multivariable functions.


