
Lecture 3-12

We now return to vector algebra and calculus. We should all know by now how to
add and subtract vectors in Rn and multiply vectors by scalars; this term we learned
how to compute the dot product ~a · ~b =

∑n
i=1 aibi of two vectors ~a = (a1, . . . , an),~b =

(b1, . . . , bn) ∈ Rn, and the cross product ~a×~b = (a2, b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) if
n = 3. Dot products are the fundamental tool we need to do geometry in Rn, as we have

the formula cos θ = ~a·~b
||~a||||~b||

for the angle θ between nonzero vectors ~a,~b (for any n), taking

θ ∈ [0, π]; this formula makes sense by the Cauchy-Schwarz inequality, which asserts that
the fraction occurring in it indeed has absolute value at most 1. In particular the vectors
~a,~b are orthogonal if and only if their dot product is 0; one of the most useful properties
of the cross product ~a×~b if n = 3 is that it is automatically orthogonal to both ~a and ~b.

A particularly simple (but also particularly important and useful) parametrized curve
in Rn is a line ~p+ t~v; here ~p,~v are constant vectors in Rn with ~v 6= ~0. In this setup ~p is a
point on the line (any point; ~p is not uniquely determined by the line) and ~v is a direction
vector for the line (it too is not unique and could be replaced by any nonzero multiple of
itself). We can determine whether two lines or more generally two parametrized curves
~r(t), ~s(u) intersect by setting ~r(t) = ~s(u) and determining whether there are two values of
the parameters t, u such that all coordinates of ~r(t) equal their counterparts in ~s(u). Since
the vector equation ~r(t) = ~s(u) amounts to a system of n equations in just two variables
t, u, we see that most pairs of parametrized curves in Rn do not intersect if n > 2, but
some do. If moreover we have ~r(t) = ~s(t), so that the curves ~r(t), ~s(u) intersect at a point
with the same values of the parameters t, u, then we say the curves collide at this point;
of course it is rare even for two intersecting curves to collide. We also looked at planes in
R3; it is most convenient to give equations for these rather than parametrizing them. Any
plane in R3 (or more generally a hyperplane in Rn is completely determined by a point
~p lying in the plane together with a normal vector ~n for it; as with direction vectors for
lines the normal vector ~n cannot be 0, but can be equivalently replaced by any nonzero
multiple of itself. The equation of the plane passing through ~p with normal ~n is then
~n · ~x = ~n · ~p, or, writing it out in coordinates,

∑
aixi =

∑
nipi, where x1, . . . , xm are the

variables (and the coordinates of ~x), ~p = (p1, . . . , pm), and ~n = (n1, . . . , nm). The angle
between a (hyper)plane and a line is π/2 minus the angle between a normal vector for the
(hyper)plane and the line.

The product rule carries over to dot and cross products of parametrized curves, so
that (d/dt)(~r(t) · ~s(t)) = ~r′(t) · ~s(t) + ~r(t) · ~s′(t) for ~r(t), ~s(t) ∈ Rn, and similarly with the
dot product replaced by the cross product, if n = 3. In particular if ||~r(t)|| is constant (so
that ~r(t) has constant speed) then the dot product ~r(t) · ~r′(t) is constantly equal to 0, so
that the tangent vector of any such curve is always orthogonal to its position vector.

We wind up our review with real-valued functions of several variables, the last topic
of the course. Given a function f : Rn → R its ith partial derivative fi = ∂f/∂xi is
obtained by differentiating f with respect to xi in the usual way, treating other vari-
ables as constants. If all partials of f exist at a point ~a ∈ Rn then we set ∇f(~a) =

(∂f/∂x1(~a), . . . , ∂f/∂xn(~a)) and call this vector the gradient of f at ~a. Thus if ~f is dif-
ferentiable at ~a then its gradient must exist there; but this necessary condition is not



sufficient. If ∇f is defined in a neighborhood of ~a and in addition is continuous at ~a then
f is always differentiable (and in fact continuously differentiable) at ~a. In this case the
directional derivative D~uf(~a) of f at ~a in the direction of ~u (a unit vector, by definition)

is defined by limt→0
f(~a+t~u)−f(~a)

t and computed by D~uf(~a) = ∇f(~a) · ~u. In particular,
the gradient ∇f(~a) has the direction of maximal rate of increase of f at ~a (if this rate of
increase is nonzero in at least one direction) and its magnitude equal the rate of increase
of f in that direction.

The formula for the directional derivative admits a massive generalization, to the chain
rule in several variables. This asserts that if f : Rn → R is differentiable at ~a ∈ Rn and if
~r(t) is a parametrized curve with ~r(t0) = ~a, then the composite function sending t to f(~r(t))
is differentiable at t = t0 and its derivative there is ∇f(~a) ·~r′(t0). In formulas, if a variable
z depends differentiably on variables y1, . . . , yn and if each yi depends differentiably on
x1, . . . , xm, then z (now regarded as a composite function) also depends differentiably on
each xi and ∂z/∂xi =

∑n
j=1(∂z/∂yj)(∂yj/∂xi). Note that the sum on the right hand side

can be interpreted either as a sum of products or as a single dot product.


