
Lecture 3-10

Continuing from last time, we recall two fundamental results on power and Taylor
series, namely that they can be differentiated or integrated term by term within the radius
of convergence. More precisely, if f(x) =

∑∞
n=0 an(x − a)n for |x − a| < R, then f(x)

is automatically differentiable on (a − R, a + R) and we have f ′(x) =
∑∞
n=1 nan(x −

a)n−1,
∫ x
a
f(t) dt =

∑∞
n=0 an

(x−a)n+1

n+1 on this interval. In particular, iterating this result, we

get an = f (n)(a)/n!. Thus the only power series in x−a that has a chance of converging to a

function f(x) is its Taylor series
∑∞
n=0

f(n)(a)
n! (x−a)n and no such power series can possibly

converge to this function if it is not infinitely differentiable. The four most important Taylor

series, all at x = 0, are ex =
∑∞
n=0

xn

n! , sinx =
∑∞
n=0(−1)n x2n+1

(2n+1)! , cosx =
∑∞
n=0

x2n

(2n)! ,

and arctanx =
∑∞
n=0(−1)n x

2n+1

2n+1 ; the first three of these series have infinite radius of
convergence while the last one has radius of convergence 1. We also have the geometric
series

∑∞
n=0 ax

n, which converges to a
1−x if |x| < 1 or a = 0 and diverges otherwise. If a

Taylor series f(x) =
∑∞
n=0 an(x− a)n happens to converge at x = a+R or a−R, then it

automatically converges to the “right” value, that is, to limx→(a+R)− or limx→(a−R)+ f(x),
respectively (assuming these limits exist).

More generally, a series
∑
an with nonnegative terms an converges if and only if it

has bounded partial sums; this holds if an ≤ bn for sufficiently large n and
∑
bn is a

known convergent series, while it fails if an ≥ bn for sufficiently large n and
∑
bn is a

known divergent series. If the series
∑
bn is such that an

bn
→ L as n → ∞ for some

finite nonzero L, then the series
∑
an,

∑
bn converge or diverge together. A series

∑
an

with nonnegative terms converges whenever an+1

an
→ L as n→∞ if L < 1 and diverges if

L > 1. A decreasing sequence
∑
an with nonnegative terms such that there is a decreasing

continuous function f(x) with f(n) = an converges if
∫∞
1
f(x) dx converges and diverges

otherwise. In particular the p-series
∑∞
n=1 n

−p converges if p > 1 and diverges otherwise.
Apart from series with nonnegative terms, the main examples of convergent series we have
seen are alternating series

∑
an, for which an = (−1)nbn and the bn form a decreasing

sequence of numbers going to 0 as n goes to ∞. Any such series converges. In particular,∑∞
n=0

(−1)n
n+1 and

∑∞
n=0

(−1)n
2n+1 both converge (to ln 2 and π/4, respectively).

Thus we can solve certain differential equations by power series: given a linear equation
like y′ + p(t)y = q(t) or y′′ + p(t)y′ + q(t)y = r(t), where the functions p, q, r are assumed
to have convergent Taylor series expansions, say at x = 0, we can inductively work out
formulas for the coefficients in a power series solution

∑
ant

n of such equations. You
should be able to do this in some simple cases.

Given a linear homogeneous differential equation y′′ + p(t)y′ + q(t)y = 0, there are
always two particular solutions y1, y2 such that the general solution takes the form c1y1 +
c2y2 for constants c1, c2; in fact, given any two solutions y1, y2 with neither a constant
multiple of the other, the general solution takes this form. Only rarely can we find two
such solutions, however (or even one nonzero solution). Two important cases where uniform
formulas for such solutions exist are the constant-coefficient case ay′′ + by′ + cy = 0 and
the Euler case t2y′′+aty′+ by = 0. In the first case, we look at the characteristic equation
ar2 + br + c = 0. Then ert is a solution of the differential equation whenever r is a root



of the characteristic equation; more precisely, if r1, r2 are the distinct real roots of the
characteristic equation, then we may take y1 = er1t, y2 = er2t; if there is just one repeated
real root r, then we may take y1 = ert, y2 = tert; if there are two conjugate nonreal
complex roots α±βi, then we may take y1 = eαt cosβt, y2 = eαt sinβt. In particular, the 0
solution is asymptotically stable if and only if both roots have strictly negative real parts
(or are negative real numbers), while the 0 solution is stable but not asymptotically stable
if and only if at least one root has real part 0 and 0 is not a repeated root. In the Euler
case, the equation corresponding to the characteristic equation is the indicial equation
r(r− 1) + ar+ b = 0. Then tr is a solution if and only if r satisfies this equation. Hence if
there are two distinct real roots r1, r2, then we may take y1 = tr1‘, y2 = tr2 ; if there is just
one repeated root r, then we may take y1 = tr, y2 = tr ln t; if there are conjugate complex
roots a ± bi, then we may take y1 = ta cos ln |bt|, y2 = ta sin ln |bt|. We should take t > 0
throughout in this last solution, to make sure that all functions are defined.


