
Lecture 2-6

For our final unit on differential equations, we turn to Laplace transforms (Chapter 6 of
the text). The name “transform” indicates that these are maps from functions to functions.
They are useful in solving differential equations because they convert such equations to
purely algebraic ones, which can then be solved directly. Also, because they are defined
in terms of integrals rather than derivatives, they are defined on many discontinuous
functions, which would otherwise be quite tricky to handle with the tools we have used so
far.

Given a function f(t), its Laplace transform Lf(t) is the function defined by the
improper integral Lf(s) =

∫∞
0
e−stf(t) dt for s > 0; notice that Lf(t) is taken to be a

function of s rather than t. We often write just Lf for Lf(t). Of course Lf(t) is defined
only if the integral converges; but we now know that this happens for s > a whenever
(for example) f(t) ≤ Keat for some constants K, a. (In general, we will not pay too much
attention to the domain of Lf , as long as this domain includes all s > a for some a). This

condition certainly does not hold for all functions (e.g. the function f(t) = et
2

does not
satisfy it), but it does hold for most functions arising in applications. The special case
where f(t) = tp and s = 1 is already interesting. The integral

∫∞
0
e−ttp−1 dt converges

exactly for p > 0. This integral is called the gamma function Γ(p). Integration by parts
shows that Γ(p) = (p− 1)Γ(p− 1) for any integer p ≥ 1, whence an easy induction shows
that Γ(p) = (p−1)! for any positive integer p. But since Γ(x) is defined for any real x > 0,
we have just interpolated the factorial function, that is, defined it for many non-integral
values. In fact, we can go further, using the recurrence Γ(t+ 1) = tΓ(t) to define Γ(t) for
all real t, apart from nonpositive integers. (The integral

∫∞
0
t−1e−t dt diverges, so even

with the recurrence relation we cannot define Γ(−n) for any nonnegative integer n). For

example, changing variables, we get Lt−1/2 = (2/
√
s)

∫∞
0
e−t

2

dt, which we saw last quarter

equals
√
π/s. From the recurrence relation we then get Lt1/2 =

√
π/(2s3/2). By a simple

change of variable we get Ltn = n!/sn+1 for any nonnegative integer n. More generally we
have Ltp = Γ(p+ 1)/sp+1 for any real p > −1. Three other simple Laplace transforms are
Leat =

∫∞
0
e(a−s)t dt = 1

s−a (for any s > a), L sin at =
∫∞
0
e−st sin at dt = a/(s2 + a2), and

L cos at = s/(s2 + a2), where we take s > 0 in both of the last formulas; you will work out
these formulas in homework next week. A table of useful Laplace transforms of particular
functions is given on p. 321 of the text; note that every entry this in this table is given
with a reference to a section (and in some cases a HW problem) in the book.

The usefulness of Laplace transforms as a tool for solving differential equations stems
from the formula Lf ′ = sLf − f(0), which follows at once by integration by parts. More
generally we have Lf (n) = snLf − sn−1f(0)− . . .− sf (n−2)(0)− f (n−1)(0). This last fact
makes it especially convenient to use Laplace transforms to solve initial-value problems
where the initial conditions are imposed at time t = 0. Thus in Example 1 in the text
(p. 318) we have the equation y′′ − y′ − 2y = 0 coupled with the initial conditions y(0) =
1, y′(0) = 0. Earlier we solved equations like this by guessing that a suitable exponential
function y(t) = ert would solve the equation if r is suitably chosen; now we can use
transforms to arrive at this solution without guesswork. Indeed, taking the transform
of both sides of the equation y′′ − y′ − 2y = 0 and writing Y (s) for the transform Ly,



we get s2Y (s) − sy(0) − y′(0) − (sY (s) − y(0)) − 2Y (s) = 0, whence (s2 − s − 2)Y (s) +
(1 − s) = 0, Y (s) = (s − 1)/(s2 − s − 2) from the initial conditions. Using the partial
fraction decomposition Y (s) = (s − 1)/(s2 − s − 2) = (1/3)/(s − 2) + (2/3)/(s + 1) and
the uniqueness of any continuous function with a specified Laplace transform, we get
y = (1/3)e2t + (2/3)e−t, since the transforms of e2t and e−t are 1/(s − 2) and 1/(s + 1),
respectively. Not only were we led to exponential functions directly here, but we solved the
initial-value problem without first having to derive the general solution to the differential
equation.

One disadvantage of using Laplace transforms to solve linear differential equations
is that there is no formula for the Laplace transform Lfg of a product fg in terms of
the transforms of f and g. Thus for most linear differential equations (with nonconstant
coefficients) we cannot solve them directly by Laplace transforms, In the special case
f(t) = t, however, we do have such a formula, arising from the following general fact: if we
define a function G(s) of one variable s by integrating a function g(s, t) of two variables s, t
with respect to t (treating s as a constant), then the derivative G′(s) of G with respect to
s is gotten by integrating the s-partial derivative gs of g(s, t) with respect to t (so that the
operations of differentiating with respect to one variable and integrating with respect to
the other commute with each other). Thus the transform L(−t)nf(t) equals Lf (n)(s). In
particular the transform Ltneat is given by n!/(s−a)n+1. Using this formula we are rapidly
led to the general solution of a linear differential equation with constant coefficients in the
case where the characteristic equation has a repeated real root, again without the necessity
of guessing that a power of t times an exponential function might solve the equation.

Laplace transforms really come into their own in solving nonhomogeneous equations
y′′ + ay′ + by = r(t) for certain discontinuous functions r(t); note that we have not dealt
with such equations so far. The simplest kind of discontinuous function is the step function
uc(t), defined to equal 1 for t ≥ c and 0 for t ≤ c. By a direct calculation we find that
the transform Luc = e−cs/s; here for the first time we see a Laplace transform that is
not a rational function. More generally, by a simple change of variable, we compute that
the transform Lucfc(t) is e−csF (s), where F is the transform of f ; here c is a positive
constant, f(t) is an integrable function defined for t ≥ 0, and fc(t) is defined to be 0 for
t ∈ [0, c) and to be f(t−c) for t ≥ c (this is my private notation; henceforth we will denote
this function simply by f(t − c)). We will use this handy formula to solve a variety of
nonhomogeneous equations with discontinuous right-hand sides later.


