
Lecture 2-5

We now briefly sketch the main ideas in Chapter 5, indicating how power series can
be used to solve differential equations, even though the sums of the series are not usually
recognizable in terms of familiar functions. One of the simplest equations not with constant
coefficients is Airy’s equation, which appears in an 1838 paper of George Airy on optics.
The equation is y′′ − xy = 0. Here, if we assume that y =

∑∞
n=0 anx

n is a solution
representable by power series, then on differentiating twice term by term and multiplying
by x, we get y′′ =

∑∞
n=0(n + 2)(n + 1)an+2x

n = xy =
∑∞

n=0 anx
n+1, whence 2a2 +∑∞

n=1(n+2)(n+1)an+2x
n =

∑∞
n=1 an−1x

n. Equating coefficients of equal powers of x, we
get a2 = 0, (n+2)(n+1)an+2 = an−1, for n ≥ 1. It follows at once that a2+3n = 0 for all n;
all coefficients a3n are completely determined by a0, while all coefficients a3n+1 are likewise
determined by a1. More precisely, we have two independent solutions of the form y1 =

a0(1 +
∑∞

n=1
x3n

3n(3n−1)(3n−3)(3n−4)···(3)(2) ) and y2 = a1(x +
∑∞

n=1
x3n+1

(3n+1)(3n)(3n−2)···(4)(3) ).

These power series are not summable in terms of functions we have seen before; but they
are easily seen to converge for all x and thus define new and interesting functions in their
own right. We call them (not surprisingly) Airy functions. One can derive properties
of these functions from the power series expansions alone, just as we can do the same for
ex, sinx, cosx from their power series. Airy functions are not as nice as these last functions,
to be sure; but they have some qualitative features in common. For example, for negative
x, Airy functions behave like solutions to y′′ + ay for a a positive constant; i.e. like the
trigonometric functions sinx and cosx. For x positive, Airy functions behave like the
solutions to y′′ − ay = 0 for a a positive constant; i.e. like the hyperbolic functions. The
oscillations of Airy functions are not constant but rather decay in amplitude and increase
in frequency as the distance form the origin increases. Airy functions have been extensively
studied and their properties are well known to applied mathematicians and scientists.

More generally, consider any linear differential equation y′′ + p(t)y′ + q(t)y = r(t),
where p, q, r are functions of t that are analytic at at a point t = t0. Then a basic
theorem asserts that the unique solution to the initial-value problem y′′+ p(t)y′+ q(t)y =
r(t), y(t0) = y0, y

′(t0) = y1 is also analytic at t = t0, and in fact given by a Taylor
series at that point whose radius of convergence is at least the minimum of the radii
of convergence of the Taylor series of p(t), q(t), r(t) at t = t0. More generally, given
the equation p(t)y′′ + q(t)y′ + r(t)y = s(t) together with the initial conditions y(t0) =
y0, y

′(t0) = y1, if all of the ratios q(t)/p(t), r(t)/p(t), s(t)/p(t) are analytic at t = t0, with
Taylor series having R as their minimum radius of convergence, then the unique solution
admits at Taylor series at that same point with radius of convergence at least R.

In certain cases, even if the coefficients of y′ and y in a linear equation have singularities
at the point t = t0 specified in initial conditions, there will still be a small modification of a
Taylor series that will solve the equation. Take t0 = 0 for simplicity. We have already seen
that the Euler equation t2y′′+aty′+ by = 0 typically admits two solutions tr1 , tr2 that are
pure powers of t, even though when this equation is divided by t2, so that the coefficient of
y′′ in it is 1, the coefficients of y′ and y both blow up at t = 0. In general, any equation of
the form t2y′′+ tp(t)y′+ q(t)y = 0 where p, q are analytic at t = 0 and do not vanish there
is said to have t = 0− as a regular singular point. Then a fundamental theorem asserts



that there is always one solution y1(t) given by the power |t|r1 of |t| times a power series
in t (this product being called a Frobenius series), where r1 is the larger of the two real
roots r1, r2 of the indicial equation r(r − 1) + p0r + q0 = 0, where p0, q0 are the constant
terms in the power series for p and q. There is also a second independent solution of the
same form with r1 replaced by the other root r2 of the indicial equation, provided that the
difference r1 − r2 is not a nonnegative integer. If this difference is a nonnegative integer,
then there is another solution of the form y1(t) ln |t|+ |t|r2

∑∞
n=0 ant

n for a suitable power
series

∑∞
n=0 ant

n. A particularly important special case is that of Bessel’s equation, which
we will discuss in more detail after we have learned about Laplace transforms, the topic
of Chapter 6 of the Boyce-DiPrima text.


