
Lecture 2-4

Last time we discussed undamped vibrations in the presence of a periodic forcing term,
governed by the equation y′′ + k2y = cos at, where the two crucial cases are a = k (where
resonance occurs) and a close but not equal to k (where beats occur). The other important
kind of vibration discussed in Chapter 3 is the damped free vibration with a forcing term,
governed by the equation my′′ + γy′ + ky = 0, where m, γ, and k are positive constants.

Here the characteristic equation is mr2 + γr + k = 0 and has roots r1, r2 =
−γ±
√
γ2−4km
2m ,

by the quadratic formula. Note that both roots ri have negative real part, so all solutions
approach 0 as t → ∞. There are three cases. If γ2 − 4mk > 0, then the general solution
is c1e

r1t + c2e
r2t; if γ2 − 4mk = 0, so that there is just one root r = −γ/2m, then the

general solution is c1e
rt + tc2e

rt, which does not differ qualitatively from the previous
case. The really different case is the one where γ2 − 4mk < 0; here the general solution is

e−γt/2m(c1 cosµt+ c2 sinµt, where µ =

√
4km−γ2

2m > 0. In this case alone we get oscillatory
solutions; they are not periodic, but their graphs resemble a cosine wave whose amplitude
decreases as t increases. The parameter µ determines the frequency with which the mass
oscillates and is accordingly called the quasi frequency. If we compare µ to the frequency
ω0 that the mass would have if damping were not present (i.e. if γ were 0), we find that

µ/ω0 =
√

1− γ2

4km , so that the damping reduces the frequency of the oscillation. The

quantity T0 = 2π/µ is the time between successive maxima or successive minima of the
position and is called the quasi period.

Now we give a general method for solving any nonhomogeneous equation y′′+ay′+by =
r(t), where r(t) is any continuous function; here we will find that there is a universal
formula for a particular solution, based on knowledge of the functions y1, y2 spanning the
solution space to the homogeneous equation y′′+ay′+ by = 0; this formula has very much
the flavor of the formula for the general solution to the first-order linear nonhomogeneous
equation. The basic idea is to start with the solution to the homogeneous equation, namely
c1y1 + c2y2, and replace the constants ci by functions vi (whence the name “variation of
parameters”). Setting y = v1y1 + v2y2, we find that y′ = v′1y1 + v1y

′
1 + v′2y2 + v2y

′
2. This

rather awkward sum of four terms becomes simpler if we assume the first and third terms
sum to 0, so let us assume this, i.e. that v′1y1 + v′2y2 = 0. Continuing, we get y′′ =
v′′1 y1 + v1y

′′
1 + v′′2 y2 + v2y

′′
2 . Computing y′′+ay′+ by, we get v′1y

′
1 + v′2y

′
2 (the coefficients of

y1 and y2 cancel), so the conditions on v1, v2 for v1y1+v2y2 to be a solution are that v′1y1+
v′2y2 = 0, v′1y

′
1 +v′2y

′
2 = r(t). This is a linear system of equations in two unknown functions

v′1, v
′
2 whose unique solution is easily computed to be v′1 = −ry2/W, v2 = ry1/W , where

W = W (y1, y2) = y1y
′
2 − y2y′1 is the Wronskian of y1 and y2, defined earlier. Integrating,

we find that our particular solution to y′′ + ay′ + by = 0 is given by (
∫

(−ry2/W ) dt)y1 +
(
∫

(ry1/W ) dt)y2. This solution applies whenever a spanning set y1, y2 for the solution
space to any homogeneous differential equation y′′ + py′ + qy = 0 is known, to give a
solution to the nonhomogeneous equation y′′+py′+ qy = r, even if the coefficients p, q are
not constant.

As a nice example, consider first the Euler equation t2y′′ + 4ty′ + 2y = 0. This
equation does not have constant coefficients, but if we try a solution of the form xr, we



find that the left side is a multiple of xr, so if we choose r properly the left side will be
0. The condition on r is that r(r − 1) + 4r + 2 = (r + 1)(r + 2) = 0, so a spanning
set of solutions to this equation is given by y1 = t−1 and y2 = t−2. Now look at the
nonhomogeneous equation t2y′′+4ty′+2y = t−1et. Computing the Wronskian W (t−1, t−2)
we get (t−1)(−2t−3) − (t−2)(−t−2) = −t−4. Then v′1 = −ry2/W = tet, v1 = (t − 1)et;
similarly v′2 = ry1/W = −t2et, v2 = (−t2 + 2t − 2)et. Hence the general solution to
t2y′′ + 4ty′ + 2y = t−1et is (t − 1)ett−1 + (t2 − 2t + 2)et(t2) + c1t

−1 + c2t
−2 = et(t−1 −

2t−2) + c1t
−1 + c2t

−2. The particular solution et(t−1 − 2t−2) is just barely simple enough
that one could imagine working it out by undetermined coefficients, but I think we can
all be grateful for the variation of parameters formula. Another example, this time with
constant coefficients, occurs in the book on p. 187; it is the equation y′′ + 4y = 3 csc t.
Here csc t and its derivatives involve infinitely many different functions, so one could not
begin to apply the method of undetermined coefficients. Plugging in the above formulas
for v′1, v

′
2, though, we get v′1 = −3 cos t, v1 = −3 sin t, while v′2 = (3/2) csc t − 3 sin t, v2 =

(3/2) ln | csc t−cot t|+3 cos t. Hence the general solution is −3 sin t cos 2t+(3/2) ln | csc t−
cot t| sin 2t+ 3 cos t sin 2t+ c1 cos 2t+ c2 sin 2t, which we may rewrite by the trigonometric
addition formulas as 3 sin t+ (3/2) ln | csc t− cot t| sin 2t+ c1 cos 2t+ c2 sin 2t. Of course, in
general we may not be able to write down the integral called for in the general solution to
the nonhomogeneous equation, even if we know the solution to the homogeneous equation,
but at least we have a general expression for this solution which moreover makes explicit
how this solution depends on the right side r(t). For example, if the Wronskian W is small,
then this solution will be unstable, changing markedly if r(t) changes by only a little; but
if W is large, then the solution will change by only a little if r(t) changes by a little.


